Normal forms of equivariant functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 51-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Equivariant analogues of the Morse lemma with parameters and the theorem on the normal form of a semiquasihomogeneous function are proved.
@article{VMUMM_2020_2_a9,
     author = {I. A. Proskurnin},
     title = {Normal forms of equivariant functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/}
}
TY  - JOUR
AU  - I. A. Proskurnin
TI  - Normal forms of equivariant functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 51
EP  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/
LA  - ru
ID  - VMUMM_2020_2_a9
ER  - 
%0 Journal Article
%A I. A. Proskurnin
%T Normal forms of equivariant functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 51-55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/
%G ru
%F VMUMM_2020_2_a9
I. A. Proskurnin. Normal forms of equivariant functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/