Normal forms of equivariant functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 51-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equivariant analogues of the Morse lemma with parameters and the theorem on the normal form of a semiquasihomogeneous function are proved.
@article{VMUMM_2020_2_a9,
     author = {I. A. Proskurnin},
     title = {Normal forms of equivariant functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/}
}
TY  - JOUR
AU  - I. A. Proskurnin
TI  - Normal forms of equivariant functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 51
EP  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/
LA  - ru
ID  - VMUMM_2020_2_a9
ER  - 
%0 Journal Article
%A I. A. Proskurnin
%T Normal forms of equivariant functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 51-55
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/
%G ru
%F VMUMM_2020_2_a9
I. A. Proskurnin. Normal forms of equivariant functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a9/

[1] Domitrz W., Manoel M., Rios P. de M., “The Wigner caustic on shell and singularities of odd functions”, Geometry and Phys., 71 (2013), 58–72 | DOI | MR | Zbl

[2] Astashov E. A., “Klassifikatsiya rostkov funktsii, ekvivariantno prostykh otnositelno gruppy poryadka 3”, Matem. zametki, 105:2 (2019), 163–178 | DOI | MR | Zbl

[3] Astashov E. A., “O klassifikatsii osobennostei, ekvivariantno prostykh otnositelno predstavlenii tsiklicheskikh grupp”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki, 26:2 (2016), 155–159 | MR | Zbl

[4] Bochner S., “Compact groups of differentiable transformations”, Ann. Math., 46 (1945), 372–381 | DOI | MR | Zbl

[5] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Algebraicheskaya geometriya 4, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–309

[6] Proskurnin I. A., “Ekvivariantnaya dostatochnost i ustoichivost”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 4, 56–60 | MR | Zbl

[7] Arnold V. I., “Evolyutsiya volnovykh frontov i ekvivariantnaya lemma Morsa”, Izbrannoe-60, Fazis, M., 1997, 289–319

[8] Arnold V. I., “Normalnye formy funktsii v okrestnosti vyrozhdennykh kriticheskikh tochek”, Uspekhi matem. nauk, 29:2 (1974), 11–49 | MR | Zbl

[9] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, v. 1, Nauka, M., 1982 | MR