Connectivity of the Stone–Chekhov remainder
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 46-48
Cet article a éte moissonné depuis la source Math-Net.Ru
A criterion and a sufficient condition of connectedness of Stone–Cech remainder of a locally compact space are obtained. Some examples of locally compact spaces with connected Stone–Cech remainder are given.
@article{VMUMM_2020_2_a7,
author = {G. B. Sorin},
title = {Connectivity of the {Stone{\textendash}Chekhov} remainder},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--48},
year = {2020},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/}
}
G. B. Sorin. Connectivity of the Stone–Chekhov remainder. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/
[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[2] Henriksen M., Isbell J. R., “Some properties of compactifications”, Duke Math. J., 25 (1958), 83–106 | DOI | MR
[3] Hatzenbuhler J. P., Mattson D. A., “Stone–Cech remainders of nowhere locally compact spaces”, Acta math. hung., 122 (2009), 29–35 | DOI | MR | Zbl
[4] Rogers J. W. Jr., “On compactifications with continua as remainders”, Fund. Math., 70 (1971), 7–11 | DOI | MR | Zbl