Connectivity of the Stone–Chekhov remainder
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 46-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion and a sufficient condition of connectedness of Stone–Cech remainder of a locally compact space are obtained. Some examples of locally compact spaces with connected Stone–Cech remainder are given.
@article{VMUMM_2020_2_a7,
     author = {G. B. Sorin},
     title = {Connectivity of the {Stone{\textendash}Chekhov} remainder},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--48},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/}
}
TY  - JOUR
AU  - G. B. Sorin
TI  - Connectivity of the Stone–Chekhov remainder
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 46
EP  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/
LA  - ru
ID  - VMUMM_2020_2_a7
ER  - 
%0 Journal Article
%A G. B. Sorin
%T Connectivity of the Stone–Chekhov remainder
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 46-48
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/
%G ru
%F VMUMM_2020_2_a7
G. B. Sorin. Connectivity of the Stone–Chekhov remainder. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a7/

[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[2] Henriksen M., Isbell J. R., “Some properties of compactifications”, Duke Math. J., 25 (1958), 83–106 | DOI | MR

[3] Hatzenbuhler J. P., Mattson D. A., “Stone–Cech remainders of nowhere locally compact spaces”, Acta math. hung., 122 (2009), 29–35 | DOI | MR | Zbl

[4] Rogers J. W. Jr., “On compactifications with continua as remainders”, Fund. Math., 70 (1971), 7–11 | DOI | MR | Zbl