Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find first integrals for the system of ideal polytropic gas dynamics on a uniformly rotating plane in Lagrangian coordinates, which correspond to the motion with uniform deformation. We show that if the adiabatic exponent $\gamma=2$, then the initial system of four second-order nonlinear ordinary differential equations can be reduced to one first-order equation and its solution can be found as a function of time. The behavior of the solution near equilibria is analyzed.
			
            
            
            
          
        
      @article{VMUMM_2020_2_a6,
     author = {M. Turzynsky},
     title = {Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--45},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/}
}
                      
                      
                    TY - JOUR AU - M. Turzynsky TI - Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 39 EP - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/ LA - ru ID - VMUMM_2020_2_a6 ER -
M. Turzynsky. Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/
