Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find first integrals for the system of ideal polytropic gas dynamics on a uniformly rotating plane in Lagrangian coordinates, which correspond to the motion with uniform deformation. We show that if the adiabatic exponent $\gamma=2$, then the initial system of four second-order nonlinear ordinary differential equations can be reduced to one first-order equation and its solution can be found as a function of time. The behavior of the solution near equilibria is analyzed.
@article{VMUMM_2020_2_a6,
     author = {M. Turzynsky},
     title = {Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--45},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/}
}
TY  - JOUR
AU  - M. Turzynsky
TI  - Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 39
EP  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/
LA  - ru
ID  - VMUMM_2020_2_a6
ER  - 
%0 Journal Article
%A M. Turzynsky
%T Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 39-45
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/
%G ru
%F VMUMM_2020_2_a6
M. Turzynsky. Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/

[1] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Gos. izd. tekhn.-teor. lit-ry, M., 1957 | MR

[2] Rozanova O. S., Turzynski M. K., “On systems of nonlinear ODE arising in gas dynamics: application to vortical motion, differential and difference equations with applications”, Springer Proc. Math. and Stat., 230 (2018), 387–398 | MR | Zbl

[3] Rozanova O. S., Turzynski M. K., “Nonlinear stability of localized and non-localized vortices in rotating compressible media, theory, numerics and applications of hyperbolic problems”, Springer Proc. Math. and Stat., 236 (2018), 567–580 | MR

[4] Ovsyannikov L. V., “Novoe reshenie uravnenii gidrodinamiki”, Dokl. AN SSSR, 111 (1956), 47–49 | Zbl

[5] Borisov A. V., Mamaev I. S., Kilin A. A., “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinam., 4:4 (2008), 363–407

[6] Anisimov S. I., Lysikov Yu. I., “O rasshirenii gazovogo oblaka v vakuum”, Prikl. matem. i mekhan., 34:5 (1970), 926–929 | Zbl

[7] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR