Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We find first integrals for the system of ideal polytropic gas dynamics on a uniformly rotating plane in Lagrangian coordinates, which correspond to the motion with uniform deformation. We show that if the adiabatic exponent $\gamma=2$, then the initial system of four second-order nonlinear ordinary differential equations can be reduced to one first-order equation and its solution can be found as a function of time. The behavior of the solution near equilibria is analyzed.
@article{VMUMM_2020_2_a6,
     author = {M. Turzynsky},
     title = {Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--45},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/}
}
TY  - JOUR
AU  - M. Turzynsky
TI  - Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 39
EP  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/
LA  - ru
ID  - VMUMM_2020_2_a6
ER  - 
%0 Journal Article
%A M. Turzynsky
%T Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 39-45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/
%G ru
%F VMUMM_2020_2_a6
M. Turzynsky. Properties of solutions to the gas dynamics equations on a rotating plane, corresponding to. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 39-45. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a6/