The stress-strain state of a hypoelastic cylindrical layer under finite strain
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 35-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exact analytical solution of the problem of axial shear of a cylindrical layer fixed on the inner surface is obtained. On the outer surface, the tangential forces are uniformly distributed. The model of hypoelasticity with objective derivatives of the corotation type is adopted: the Jaumann stress rate and the Green–McInnis–Naghdi stress rate. The analysis of these models shows the existence of the Kelvin and Poynting effects.
@article{VMUMM_2020_2_a5,
     author = {Z. G. Tunguskova},
     title = {The stress-strain state of a hypoelastic cylindrical layer under finite strain},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a5/}
}
TY  - JOUR
AU  - Z. G. Tunguskova
TI  - The stress-strain state of a hypoelastic cylindrical layer under finite strain
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 35
EP  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a5/
LA  - ru
ID  - VMUMM_2020_2_a5
ER  - 
%0 Journal Article
%A Z. G. Tunguskova
%T The stress-strain state of a hypoelastic cylindrical layer under finite strain
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 35-39
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a5/
%G ru
%F VMUMM_2020_2_a5
Z. G. Tunguskova. The stress-strain state of a hypoelastic cylindrical layer under finite strain. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a5/

[1] Ponomarev S. D., Biderman V. L., Raschety na prochnost v mashinostroenii, v. 12, GNTIMAShLIT, M., 1958

[2] Brovko G. L., Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy. Razvitie matematicheskogo apparata i osnov obschei teorii, Nauka, M., 2017

[3] Brovko G. L., “Nekotorye podkhody k postroeniyu opredelyayuschikh sootnoshenii plastichnosti pri bolshikh deformatsiyakh”, Uprugost i neuprugost, Izd-vo MGU, M., 1987, 68–81

[4] Brovko G. L., Finoshkina A. S., “Ispolzovanie novykh ob'ektivnykh proizvodnykh v modelyakh plastichnosti pri konechnykh deformatsiyakh”, Tr. VI Shkoly-seminara “Sovremennye problemy termovyazkoplastichnosti v prikladnykh zadachakh analiza konstruktsii i tekhnologii vysokikh parametrov”, M., 2013, 14–24

[5] Tunguskova Z. G., “Analiticheskoe predstavlenie tenzora napryazhenii v zadache o sdvige gipouprugogo tela s ispolzovaniem korotatsionnykh proizvodnykh opredelennogo vida”, Uprugost i neuprugost, Izd-vo MGU, M., 2016, 260–262