Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is focused on the study of the spectrum of the symbol of the equation describing the motion of a viscoelastic plate in a flow of fluid or gas. The lower bound of critical flow rate at which the motion becomes unstable is obtained using methods of operator analysis.
@article{VMUMM_2020_2_a2,
     author = {A. V. Davydov},
     title = {Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--22},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/}
}
TY  - JOUR
AU  - A. V. Davydov
TI  - Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 15
EP  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/
LA  - ru
ID  - VMUMM_2020_2_a2
ER  - 
%0 Journal Article
%A A. V. Davydov
%T Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 15-22
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/
%G ru
%F VMUMM_2020_2_a2
A. V. Davydov. Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 15-22. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Larionov G. S., “Ustoichivost kolebanii vyazkouprugoi plastinki pri bolshikh sverkhzvukovykh skorostyakh”, Voprosy vychislitelnoi i prikladnoi matematiki, 3, Tashkent, 1970, 156–163

[3] Abdukhakimov F. A., Vedeneev V. V., “Issledovanie odnomodovogo flattera plastin razlichnoi formy pri maloi sverkhzvukovoi skorosti”, Uch. zap. TsAGI, 48:1 (2017), 86–98

[4] Vedeneev V. V., “Chislennoe issledovanie panelnogo flattera s ispolzovaniem tochnoi aerodinamicheskoi teorii”, Tez. dokl. Mezhdunar. konf. “Aviatsiya i kosmonavtika — 2008”, MAI-PRINT, M., 2008

[5] Miloslavskii A. I., “O spektre neustoichivosti operatornogo puchka”, Matem. zametki, 49:4 (1991), 88–94 | MR

[6] Miloslavskii A. I., Ob ustoichivosti integrodifferentsialnykh uravnenii, voznikayuschikh v vyazkouprugosti, Dep. UkrNIINTI 13.04.87. No 1226 — Uk87

[7] Pipkin A. C., Gurtin M. E., “A general theory of heat conduction with finite wave speeds”, Arch. Ration. Mech. and Anal., 31:13 (1968), 113–126 | MR | Zbl

[8] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of materials with memory, theory and applications, Springer, N. Y.–Dordrecht–Heidelberg–London, 2012 | MR | Zbl

[9] Vlasov V. V., Rautian N. A., Shamaev A. S., “Analysis of operator models arising in problems of hereditary mechanics”, J. Math. Sci., 201:5 (2014), 673–692 | DOI | MR | Zbl

[10] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz abstraktnykh giperbolicheskikh integrodifferentsialnykh uravnenii”, Tr. seminara im. I.G. Petrovskogo, 28, Izd-vo MGU, M., 2011, 75–113

[11] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[12] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin type equations”, SIAM J. Math. Anal., 2011, no. 43, 2296–2306 | DOI | MR | Zbl

[13] Davydov A. V., Tikhonov Yu. A., “Issledovanie operatornykh modelei Kelvina–Foigta, voznikayuschikh v teorii vyazkouprugosti”, Differents. uravneniya, 54:12 (2018), 1663–1677 | DOI | Zbl

[14] Bogachev V. I., Smolyanov O. G., Deistvitelnyi i funktsionalnyi analiz, universitetskii kurs, NITs “RKhD”, M.–Izhevsk, 2009

[15] Lokshin A. A., Suvorova Yu. V., Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, Izd-vo MGU, M., 1982