@article{VMUMM_2020_2_a2,
author = {A. V. Davydov},
title = {Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {15--22},
year = {2020},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/}
}
TY - JOUR AU - A. V. Davydov TI - Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 15 EP - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/ LA - ru ID - VMUMM_2020_2_a2 ER -
%0 Journal Article %A A. V. Davydov %T Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 15-22 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/ %G ru %F VMUMM_2020_2_a2
A. V. Davydov. Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 15-22. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a2/
[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006
[2] Larionov G. S., “Ustoichivost kolebanii vyazkouprugoi plastinki pri bolshikh sverkhzvukovykh skorostyakh”, Voprosy vychislitelnoi i prikladnoi matematiki, 3, Tashkent, 1970, 156–163
[3] Abdukhakimov F. A., Vedeneev V. V., “Issledovanie odnomodovogo flattera plastin razlichnoi formy pri maloi sverkhzvukovoi skorosti”, Uch. zap. TsAGI, 48:1 (2017), 86–98
[4] Vedeneev V. V., “Chislennoe issledovanie panelnogo flattera s ispolzovaniem tochnoi aerodinamicheskoi teorii”, Tez. dokl. Mezhdunar. konf. “Aviatsiya i kosmonavtika — 2008”, MAI-PRINT, M., 2008
[5] Miloslavskii A. I., “O spektre neustoichivosti operatornogo puchka”, Matem. zametki, 49:4 (1991), 88–94 | MR
[6] Miloslavskii A. I., Ob ustoichivosti integrodifferentsialnykh uravnenii, voznikayuschikh v vyazkouprugosti, Dep. UkrNIINTI 13.04.87. No 1226 — Uk87
[7] Pipkin A. C., Gurtin M. E., “A general theory of heat conduction with finite wave speeds”, Arch. Ration. Mech. and Anal., 31:13 (1968), 113–126 | MR | Zbl
[8] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of materials with memory, theory and applications, Springer, N. Y.–Dordrecht–Heidelberg–London, 2012 | MR | Zbl
[9] Vlasov V. V., Rautian N. A., Shamaev A. S., “Analysis of operator models arising in problems of hereditary mechanics”, J. Math. Sci., 201:5 (2014), 673–692 | DOI | MR | Zbl
[10] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz abstraktnykh giperbolicheskikh integrodifferentsialnykh uravnenii”, Tr. seminara im. I.G. Petrovskogo, 28, Izd-vo MGU, M., 2011, 75–113
[11] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016
[12] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin type equations”, SIAM J. Math. Anal., 2011, no. 43, 2296–2306 | DOI | MR | Zbl
[13] Davydov A. V., Tikhonov Yu. A., “Issledovanie operatornykh modelei Kelvina–Foigta, voznikayuschikh v teorii vyazkouprugosti”, Differents. uravneniya, 54:12 (2018), 1663–1677 | DOI | Zbl
[14] Bogachev V. I., Smolyanov O. G., Deistvitelnyi i funktsionalnyi analiz, universitetskii kurs, NITs “RKhD”, M.–Izhevsk, 2009
[15] Lokshin A. A., Suvorova Yu. V., Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, Izd-vo MGU, M., 1982