Oscillation equation of a beam with fixed and pivotally supporter ends
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of existence of periodic solutions of a quasilinear equation of forced oscillations of an I-beam whose one end is fixed and the second one is pivotally supported is studied. Properties of the differential operator are given and the theorem on the existence of a countable number of solutions is proved in the case the nonlinear term has a power growth.
@article{VMUMM_2020_2_a0,
     author = {I. A. Rudakov},
     title = {Oscillation equation of a beam with fixed and pivotally supporter ends},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Oscillation equation of a beam with fixed and pivotally supporter ends
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 3
EP  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/
LA  - ru
ID  - VMUMM_2020_2_a0
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Oscillation equation of a beam with fixed and pivotally supporter ends
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-8
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/
%G ru
%F VMUMM_2020_2_a0
I. A. Rudakov. Oscillation equation of a beam with fixed and pivotally supporter ends. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/

[1] Kollatts L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968

[2] Vanko V. I., “O sobstvennykh chastotakh kolebanii provodov vozdushnykh LEP”, Izv. vuzov, 1987, no. 8, 48–56

[3] Feireisl E., “Time periodic solutions to a beam equations”, Nonlinear Anal., 12 (1988), 279–290 | DOI | MR | Zbl

[4] Chang K. C., Sanchez L., “Nontrivial periodic solutions of a nonlinear beam equation”, Math. Mech. in Appl. Sci., 4 (1982), 194–205 | DOI | MR | Zbl

[5] Rudakov I. A., “Periodicheskie resheniya kvazilineinogo uravneniya vynuzhdennykh kolebanii balki”, Izv. RAN. Ser. matem., 79:5 (2015), 215–238 | DOI | MR | Zbl

[6] Yamaguchi M., “Existence of periodic solutions of second order nonlinear evolution equations and applications”, Funkc. Ekvacioj., 38 (1995), 519–538 | MR | Zbl

[7] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo MGU, M., 1983

[8] Rabinowitz P. H., “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272 (1982), 753–769 | DOI | MR | Zbl

[9] Tanaka K., “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{p-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307 (1988), 615–645 | MR | Zbl

[10] Bahri A., Berestycki H., “Topological results on a certain class of functionals and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl

[11] Rudakov I. A., “Periodicheskie resheniya kvazilineinogo uravneniya kolebanii balki s odnorodnymi granichnymi usloviyami”, Differents. uravneniya, 48:6 (2012), 814–825 | Zbl