Oscillation equation of a beam with fixed and pivotally supporter ends
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of existence of periodic solutions of a quasilinear equation of forced oscillations of an I-beam whose one end is fixed and the second one is pivotally supported is studied. Properties of the differential operator are given and the theorem on the existence of a countable number of solutions is proved in the case the nonlinear term has a power growth.
@article{VMUMM_2020_2_a0,
author = {I. A. Rudakov},
title = {Oscillation equation of a beam with fixed and pivotally supporter ends},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/}
}
I. A. Rudakov. Oscillation equation of a beam with fixed and pivotally supporter ends. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2020_2_a0/