The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 64-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fomenko–Zieshang invariant of an interesting case of an integrable billiard book is calculated and it is shown that such a book models the dynamics of Goryachev–Chaplygin integrable case on a certain isoenergy surface.
@article{VMUMM_2020_1_a9,
     author = {V. V. Vedyushkina},
     title = {The {Liouville} foliation of the billiard book modelling the {Goryachev{\textendash}Chaplygin} case},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--68},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a9/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 64
EP  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a9/
LA  - ru
ID  - VMUMM_2020_1_a9
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 64-68
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a9/
%G ru
%F VMUMM_2020_1_a9
V. V. Vedyushkina. The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 64-68. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a9/

[1] Birkgof Dzh.D., Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[2] Kozlov V. V., Treschev D. V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[3] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[4] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[5] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[6] Vedyushkina V. V., “Invarianty Fomenko–Tsishanga nevypuklykh topologicheskikh billiardov”, Matem. sb., 210:3 (2019), 17–74 | DOI | MR | Zbl

[7] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[8] Fomenko A. T., Vedyushkina V. V., “Ponizhenie stepeni integralov gamiltonovykh sistem s pomoschyu billiardov”, Dokl. RAN, 486:2 (2019), 151–155 | DOI | Zbl