Conservation of factorizability of $G$-spaces by equivariant mappings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the $\mathbb R$-factorizability of an equivariant image of an $\mathbb R$-factorizable $G$-space with a $\mathrm{d}$-open action of an $\omega$-narrow $P$-group. It is shown that the $\mathbb R$-factorizability, $m$-factorizability, and $M$-factorizability of $G$-spaces hold in the case of $\mathrm{d}$-open equivariant images. It is proved that the $\mathbb R$-factorizability of topological groups holds under $\mathrm{d}$-open homomorphisms.
@article{VMUMM_2020_1_a7,
     author = {E. V. Martyanov},
     title = {Conservation of factorizability of $G$-spaces by equivariant mappings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--59},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/}
}
TY  - JOUR
AU  - E. V. Martyanov
TI  - Conservation of factorizability of $G$-spaces by equivariant mappings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 56
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/
LA  - ru
ID  - VMUMM_2020_1_a7
ER  - 
%0 Journal Article
%A E. V. Martyanov
%T Conservation of factorizability of $G$-spaces by equivariant mappings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 56-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/
%G ru
%F VMUMM_2020_1_a7
E. V. Martyanov. Conservation of factorizability of $G$-spaces by equivariant mappings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/