Conservation of factorizability of $G$-spaces by equivariant mappings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the $\mathbb R$-factorizability of an equivariant image of an $\mathbb R$-factorizable $G$-space with a $\mathrm{d}$-open action of an $\omega$-narrow $P$-group. It is shown that the $\mathbb R$-factorizability, $m$-factorizability, and $M$-factorizability of $G$-spaces hold in the case of $\mathrm{d}$-open equivariant images. It is proved that the $\mathbb R$-factorizability of topological groups holds under $\mathrm{d}$-open homomorphisms.
@article{VMUMM_2020_1_a7,
author = {E. V. Martyanov},
title = {Conservation of factorizability of $G$-spaces by equivariant mappings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {56--59},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/}
}
E. V. Martyanov. Conservation of factorizability of $G$-spaces by equivariant mappings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/