Conservation of factorizability of $G$-spaces by equivariant mappings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the $\mathbb R$-factorizability of an equivariant image of an $\mathbb R$-factorizable $G$-space with a $\mathrm{d}$-open action of an $\omega$-narrow $P$-group. It is shown that the $\mathbb R$-factorizability, $m$-factorizability, and $M$-factorizability of $G$-spaces hold in the case of $\mathrm{d}$-open equivariant images. It is proved that the $\mathbb R$-factorizability of topological groups holds under $\mathrm{d}$-open homomorphisms.
@article{VMUMM_2020_1_a7,
     author = {E. V. Martyanov},
     title = {Conservation of factorizability of $G$-spaces by equivariant mappings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--59},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/}
}
TY  - JOUR
AU  - E. V. Martyanov
TI  - Conservation of factorizability of $G$-spaces by equivariant mappings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 56
EP  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/
LA  - ru
ID  - VMUMM_2020_1_a7
ER  - 
%0 Journal Article
%A E. V. Martyanov
%T Conservation of factorizability of $G$-spaces by equivariant mappings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 56-59
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/
%G ru
%F VMUMM_2020_1_a7
E. V. Martyanov. Conservation of factorizability of $G$-spaces by equivariant mappings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a7/

[1] Tkachenko M. G., “Introduction to topological groups”, Topol. and its Appl., 86:3 (1998), 179–231 | DOI | MR | Zbl

[2] Arhangel'skii A. V., Tkachenko M. G., Topological groups and related structures, Atlantis Press, Paris, 2008 | MR | Zbl

[3] Kozlov K. L., “$\mathbb R$-factorizable $G$-spaces”, Topol. and its Appl., 227:3 (2017), 146–164 | DOI | MR | Zbl

[4] Martyanov E. V., “Kharakterizatsiya $\mathbb R$-faktorizuemykh $G$-prostranstv”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 2, 7–12 | MR | Zbl

[5] Martyanov E. V., “Ekviravnomernye faktorprostranstva”, Matem. zametki, 104:6 (2018), 872–894 | DOI | MR | Zbl

[6] Vries J.De., Topological transformation groups 1. A categorical approach, Mathematisch centrum, Amsterdam, 1975 | MR | Zbl

[7] Megrelishvili M. G., “Compactification and factorization in the category of G-spaces”, Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, eds. J. Adamek, S. MacLane, World Scientifics, Singapore, 1989, 220–237 | MR

[8] Kozlov K. L., Chatyrko V. A., “O bikompaktnykh G-rasshireniyakh”, Matem. zametki, 78:5 (2005), 695–709 | DOI | MR | Zbl

[9] Isbell J. R., Uniform Spaces, Math. Surveys, 12, American Mathematical Society, Providence, RI, 1964 | MR | Zbl

[10] Chatyrko V. A., Kozlov K. L., “The maximal G-compactifications of G-spaces with special actions”, Proc. Ninth Prague Topological Symposium (Prague, Czech Republic, 2001), Topol. Atlas, Toronto, 2002, 15–21 | MR | Zbl

[11] Kulpa W., “Factorization and inverse expansion theorems for uniformities”, Colloq. Math., 21:2 (1970), 217–227 | DOI | MR | Zbl

[12] Engelking R., Obschaya topologiya, Per. s angl., Mir, M., 1986 | MR

[13] Kozlov K. L., Chatyrko V. A., “Topologicheskie gruppy preobrazovanii i kompakty Dugundzhi”, Matem. sb., 201:1 (2010), 103–128 | DOI | MR | Zbl

[14] Martyanov E. V., “$\mathbb R$-faktorizuemost $G$-prostranstv v kategorii $G-Tych$”, Izv. RAN. Ser. matem., 83:2 (2019), 126–141 | DOI | MR | Zbl