Dynamics of Chaplygin sleigh on a horizontal plane with friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 48-55
Cet article a éte moissonné depuis la source Math-Net.Ru
The equations of motion of the Chaplygin sleigh on a horizontal plane with friction are obtained in this paper. A geometric interpretation of the continuous motion is presented; it is proved that the movement of the sleigh stops in a finite time.
@article{VMUMM_2020_1_a6,
author = {A. Yu. Shamin},
title = {Dynamics of {Chaplygin} sleigh on a horizontal plane with friction},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {48--55},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a6/}
}
A. Yu. Shamin. Dynamics of Chaplygin sleigh on a horizontal plane with friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 48-55. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a6/
[1] Ivanov A. P., Osnovy teorii sistem s treniem, NITs “RKhD”. IKI, M.–Izhevsk, 2011
[2] Ishkhanyan M. V., Karapetyan A. V., “Dinamika odnorodnogo shara na gorizontalnoi ploskosti s treniem skolzheniya, vercheniya i kacheniya ”, Izv. RAN. Mekhan. tverdogo tela, 2010, no. 2, 3–14 | MR
[3] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, M., 1967
[4] Caratheodory C., “Der Schlitten”, Z. angew. Math. und Mech., 13 (1933), 71–76 | DOI
[5] Chaplygin C. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Sobr. soch., v. 1, OGIZ, M.–L., 1948 | MR | Zbl