Diffraction of acoustic waves on a half-plane in the case of impedance boundary conditions. Applications to sound barriers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 42-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed and the simple analytical solutions are obtained for the diffraction problems of acoustic waves on a half-plane with the impedance boundary condition on its one surface and the Neumann or Dirichlet condition on the opposite surface. It is shown that the properties of these solutions are essential for the optimal design of barriers with sound-absorbing walls.
@article{VMUMM_2020_1_a5,
     author = {M. Sh. Israilov},
     title = {Diffraction of acoustic waves on a half-plane in the case of impedance boundary conditions. {Applications} to sound barriers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--48},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a5/}
}
TY  - JOUR
AU  - M. Sh. Israilov
TI  - Diffraction of acoustic waves on a half-plane in the case of impedance boundary conditions. Applications to sound barriers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 42
EP  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a5/
LA  - ru
ID  - VMUMM_2020_1_a5
ER  - 
%0 Journal Article
%A M. Sh. Israilov
%T Diffraction of acoustic waves on a half-plane in the case of impedance boundary conditions. Applications to sound barriers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 42-48
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a5/
%G ru
%F VMUMM_2020_1_a5
M. Sh. Israilov. Diffraction of acoustic waves on a half-plane in the case of impedance boundary conditions. Applications to sound barriers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 42-48. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a5/

[1] Butler G. F., “A note on improving the attenuation given by a noise barrier”, J. Sound and Vibr., 32:3 (1974), 367–369 | DOI

[2] Rawlins A. D., “The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane”, Proc. Roy. Soc. London, A346:1647 (1975), 469–484 | MR | Zbl

[3] Fujiwara K., Ando Y., Maekawa Z., “Noise control by barriers. Part 2: Noise reduction by an absorptive barrier”, Appl. Acoustics, 10 (1977), 167–179 | DOI

[4] Meixner J., “Die Kantenbedingung in der Theorie der Beigung electromagnetischer Wellen an vollkommen leitenden ebenen Schirmen”, Ann. Phys., 6 (1949), 2–9 | MR | Zbl

[5] Pierce A. D., Acoustics. An introduction to its physical principles and applications, McGraw-Hill, N.Y., 1981 | MR

[6] Morse M., Ingard K. U., “Linear Acoustic Theory”, Acoustics I, Encyclopedia of Physics, XI/1, ed. S. Flugge, Springer-Verlag, Berlin, 1961 | MR

[7] Peters A. S., Stoker J. J., “A uniqueness theorem and a new solution for Sommerfeld's and other diffraction problems”, Communs Pure and Appl. Math., 7:3 (1954), 565–585 | DOI | MR | Zbl

[8] Борн М., Вольф Э., Основы оптики, Наука, М., 1973 | MR | Zbl

[9] Israilov M. Sh., “Difraktsiya akusticheskikh i uprugikh voln na poluploskosti pri raznotipnykh granichnykh usloviyakh”, Izv. RAN. Mekhan. tverdogo tela, 3 (2013), 121–134

[10] Israilov M. Sh., “Difraktsiya ploskikh zvukovykh voln na “tverdo-myagkoi” poluploskosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 4, 34–40 | Zbl

[11] Hohenwarter D., “Railway noise propagation models”, J. Sound and Vibr., 141:3 (1990), 17–41 | DOI

[12] Israilov M. Sh., Akchamatova L. R., Abdullaev A. M., “Issledovanie gasheniya shuma barerami s razlichayuschimisya zvukopogloschayuschimi svoistvami storon”, Izv. Chechen. gos un-ta, 3 (2017), 21–28