On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 28-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Relations between the best $m$-term and best approximations in the spaces $l_p$ are studied
for complex-valued sequences whose absolute values satisfy monotonicity-type conditions.
@article{VMUMM_2020_1_a3,
author = {N. L. Kudryavtsev},
title = {On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {28--36},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/}
}
TY - JOUR AU - N. L. Kudryavtsev TI - On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 28 EP - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/ LA - ru ID - VMUMM_2020_1_a3 ER -
%0 Journal Article %A N. L. Kudryavtsev %T On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2020 %P 28-36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/ %G ru %F VMUMM_2020_1_a3
N. L. Kudryavtsev. On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 28-36. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/