On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 28-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations between the best $m$-term and best approximations in the spaces $l_p$ are studied for complex-valued sequences whose absolute values satisfy monotonicity-type conditions.
@article{VMUMM_2020_1_a3,
     author = {N. L. Kudryavtsev},
     title = {On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {28--36},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/}
}
TY  - JOUR
AU  - N. L. Kudryavtsev
TI  - On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 28
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/
LA  - ru
ID  - VMUMM_2020_1_a3
ER  - 
%0 Journal Article
%A N. L. Kudryavtsev
%T On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 28-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/
%G ru
%F VMUMM_2020_1_a3
N. L. Kudryavtsev. On connection of $m$-term and best approximations of some classes of sequences in the spaces $l_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 28-36. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a3/