Asymptotics of solutions to linear differential equations of odd order
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 23-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic formulas are obtained in the paper for $x\to +\infty$ for the fundamental system of solutions to the equation
$$
l (y): = i^{2n+1}\{ (qy^{(n+1)})^{(n)}+(qy^{(n)})^{(n+1)}\}+py=\lambda y, \qquad x\in I:=[1,~+\infty),
$$
where $\lambda $ is a complex parameter. It is assumed that $q$ is a positive continuously differentiable function,
$p$ has the form $p =\sigma^{(k)}$, $0\le k \le n$, where $\sigma$ is a locally integrable on $I$ function,
and the derivative is understood in the sense of the theory of distributions. In the case when $k=0$ and $\lambda \ne 0$,
and the coefficients $q$ and $p$ of the expression $l (y)$ are such that $q=1/2 +q_1$, and $q_1,\sigma(=p)$
are integrable on $I$, these formulas are well known. It was established in the paper that they are valid
under the same restrictions on $q_1$ and $\sigma$ and for any $1\le k \le n-1$. For $k=n$ additional constraints
arise on these functions. We consider separately the case when $\lambda= 0 $.
Asymptotic formulas were also obtained for solutions to the equation $l (y)=\lambda y$ under the condition
$ q(x) = \alpha x^{2n+1+\nu} (1+r(x))^{-2}, $
$ \sigma(x) = x^{k+\nu}(\beta+ s(x)),$ where $\alpha \ne 0$ and $\beta$ are complex numbers, $\nu \geqslant 0$,
and the functions $r $ and $s $ satisfy certain conditions of integral decay.
@article{VMUMM_2020_1_a2,
author = {K. A. Mirzoev and N. N. Konechnaja},
title = {Asymptotics of solutions to linear differential equations of odd order},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--28},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a2/}
}
TY - JOUR AU - K. A. Mirzoev AU - N. N. Konechnaja TI - Asymptotics of solutions to linear differential equations of odd order JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2020 SP - 23 EP - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a2/ LA - ru ID - VMUMM_2020_1_a2 ER -
K. A. Mirzoev; N. N. Konechnaja. Asymptotics of solutions to linear differential equations of odd order. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a2/