@article{VMUMM_2020_1_a10,
author = {L. Yu. Devyatkin},
title = {The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {69--70},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/}
}
TY - JOUR
AU - L. Yu. Devyatkin
TI - The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2020
SP - 69
EP - 70
IS - 1
UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
LA - ru
ID - VMUMM_2020_1_a10
ER -
%0 Journal Article
%A L. Yu. Devyatkin
%T The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 69-70
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
%G ru
%F VMUMM_2020_1_a10
L. Yu. Devyatkin. The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 69-70. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
[1] Makarov A. V., “O gomomorfizmakh funktsionalnykh sistem mnogoznachnykh logik”, Matematicheskie voprosy kibernetiki, 4, Nauka, M., 1992, 5–29
[2] Lau D., Function algebras on finite sets: Basic course on many-valued logic and clone theory, Springer, Berlin–Heidelberg–N.Y., 2006 | MR
[3] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. Matem. in-ta AN SSSR, 51, 1958, 5–142
[4] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl
[5] Makarov A. V., “Opisanie vsekh minimalnykh zamknutykh klassov v chastichno uporyadochennom mnozhestve $\mathcal{L}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 1, 65–66 | Zbl
[6] Makarov A. V., Makarov V. V., “Schetnost chisla zamknutykh nadklassov nekotorykh minimalnykh klassov v chastichno uporyadochennom mnozhestve $\mathcal{L}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 1, 62–64 | Zbl