The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 69-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the partially ordered set $\mathcal{L}^{k+1}_{k}$ of all closed classes of $(k+1)$-valued logic which can be homomorphically mapped onto $k$-valued logic has the cardinality of continuum.
@article{VMUMM_2020_1_a10,
     author = {L. Yu. Devyatkin},
     title = {The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--70},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/}
}
TY  - JOUR
AU  - L. Yu. Devyatkin
TI  - The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 69
EP  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
LA  - ru
ID  - VMUMM_2020_1_a10
ER  - 
%0 Journal Article
%A L. Yu. Devyatkin
%T The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 69-70
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
%G ru
%F VMUMM_2020_1_a10
L. Yu. Devyatkin. The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 69-70. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/

[1] Makarov A. V., “O gomomorfizmakh funktsionalnykh sistem mnogoznachnykh logik”, Matematicheskie voprosy kibernetiki, 4, Nauka, M., 1992, 5–29

[2] Lau D., Function algebras on finite sets: Basic course on many-valued logic and clone theory, Springer, Berlin–Heidelberg–N.Y., 2006 | MR

[3] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. Matem. in-ta AN SSSR, 51, 1958, 5–142

[4] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl

[5] Makarov A. V., “Opisanie vsekh minimalnykh zamknutykh klassov v chastichno uporyadochennom mnozhestve $\mathcal{L}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 1, 65–66 | Zbl

[6] Makarov A. V., Makarov V. V., “Schetnost chisla zamknutykh nadklassov nekotorykh minimalnykh klassov v chastichno uporyadochennom mnozhestve $\mathcal{L}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 1, 62–64 | Zbl