The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 69-70
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the partially ordered set $\mathcal{L}^{k+1}_{k}$ of all closed classes of $(k+1)$-valued logic 
which can be homomorphically mapped onto $k$-valued logic has the cardinality of continuum.
			
            
            
            
          
        
      @article{VMUMM_2020_1_a10,
     author = {L. Yu. Devyatkin},
     title = {The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--70},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/}
}
                      
                      
                    TY  - JOUR
AU  - L. Yu. Devyatkin
TI  - The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2020
SP  - 69
EP  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
LA  - ru
ID  - VMUMM_2020_1_a10
ER  - 
                      
                      
                    %0 Journal Article
%A L. Yu. Devyatkin
%T The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 69-70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
%G ru
%F VMUMM_2020_1_a10
                      
                      
                    L. Yu. Devyatkin. The set of closed classes $P_{k+1}$ that can be homomorphically mapped on $P_k$ has the cardinality of continuum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 69-70. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a10/
                  
                