Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Interrelation between partial moduli of smoothness of positive order
considered in metrics of $L_{p_1 \infty}, L_{\infty p_2}$, and $L_{p_1 p_2}$ is studied.
@article{VMUMM_2020_1_a0,
author = {M. K. Potapov and B. V. Simonov},
title = {Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--17},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/}
}
TY - JOUR
AU - M. K. Potapov
AU - B. V. Simonov
TI - Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2020
SP - 3
EP - 17
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/
LA - ru
ID - VMUMM_2020_1_a0
ER -
%0 Journal Article
%A M. K. Potapov
%A B. V. Simonov
%T Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/
%G ru
%F VMUMM_2020_1_a0
M. K. Potapov; B. V. Simonov. Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 3-17. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/