@article{VMUMM_2020_1_a0,
author = {M. K. Potapov and B. V. Simonov},
title = {Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--17},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/}
}
TY - JOUR
AU - M. K. Potapov
AU - B. V. Simonov
TI - Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2020
SP - 3
EP - 17
IS - 1
UR - http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/
LA - ru
ID - VMUMM_2020_1_a0
ER -
%0 Journal Article
%A M. K. Potapov
%A B. V. Simonov
%T Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2020
%P 3-17
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/
%G ru
%F VMUMM_2020_1_a0
M. K. Potapov; B. V. Simonov. Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2020), pp. 3-17. http://geodesic.mathdoc.fr/item/VMUMM_2020_1_a0/
[1] Potapov M. K., Simonov B. V., “Otsenki smeshannykh modulei gladkosti v metrikakh $L_q$ cherez smeshannye moduli gladkosti v metrike $L_1$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 12–26 | MR | Zbl
[2] Potapov M. K., Simonov B. V., “Svyaz mezhdu smeshannymi modulyami gladkosti v metrikakh $L_p$ i $L_{\infty}$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 3, 21–35 | Zbl
[3] Potapov M. K., Simonov B. V., “Svyaz mezhdu polnymi modulyami gladkosti v metrikakh $L_1$ i $L_\infty$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 1, 16–24 | Zbl
[4] Potapov M. K., Simonov B. V., “Analogues of Ulyanov inequalities for mixed moduli of smoothness”, Methods of Fourier analysis and approximation theory, Applied and numerical harmonic analysis, Birkhäuser-Verlag, Switzerland, Basel, 2016, 161–179 | DOI | MR | Zbl
[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975
[6] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965
[7] Potapov M. K., Simonov B. V., “Svoistva chastnogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Matematika, Sovremennye problemy matematiki i mekhaniki. Tr. mekh.-mat. f-ta MGU imeni M. V. Lomonosova, X, no. 1, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU imeni M. V. Lomonosova, M., 2014, 58–71
[8] Potapov M. K., Simonov B. V., Tikhonov S. Yu., Drobnye moduli gladkosti, Uchebnoe posobie, MAKS Press, M., 2016
[9] Potapov M. K., Simonov B. V., “Neravenstva raznykh metrik dlya trigonometricheskikh polinomov”, Izv. vuzov. Matematika, 2019, no. 1, 1–14
[10] Uninskii A. P., “Neravenstva v smeshannoi metrike dlya trigonometricheskikh polinomov i tselykh funktsii konechnoi stepeni”, Mat-ly Vsesoyuz. simp. po teoremam vlozheniya (Baku, 1966), 212–213 | MR
[11] Bari N. K., Trigonometricheskie ryady, Izd-vo fiz-mat. literatury, M., 1961 | MR