Local power of Kolmogorov’s and omega-squared type criteria in autoregression
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 58-61
Voir la notice de l'article provenant de la source Math-Net.Ru
A stationary $AR(p)$ model is considered. The autoregression parameters are unknown as well as the distribution of innovations. Based on the residuals from the parametric estimates, an analog of the empirical distribution function is defined and tests of Kolmogorov's and $\omega^2$ type are constructed for testing hypotheses on the distribution of innovations. The asymptotic power of these tests under local alternatives is obtained.
@article{VMUMM_2019_6_a9,
author = {M. V. Boldin},
title = {Local power of {Kolmogorov{\textquoteright}s} and omega-squared type criteria in autoregression},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--61},
publisher = {mathdoc},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a9/}
}
TY - JOUR AU - M. V. Boldin TI - Local power of Kolmogorov’s and omega-squared type criteria in autoregression JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 58 EP - 61 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a9/ LA - ru ID - VMUMM_2019_6_a9 ER -
M. V. Boldin. Local power of Kolmogorov’s and omega-squared type criteria in autoregression. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a9/