Local power of Kolmogorov’s and omega-squared type criteria in autoregression
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 58-61
A stationary $AR(p)$ model is considered. The autoregression parameters are unknown as well as the distribution of innovations. Based on the residuals from the parametric estimates, an analog of the empirical distribution function is defined and tests of Kolmogorov's and $\omega^2$ type are constructed for testing hypotheses on the distribution of innovations. The asymptotic power of these tests under local alternatives is obtained.
@article{VMUMM_2019_6_a9,
author = {M. V. Boldin},
title = {Local power of {Kolmogorov{\textquoteright}s} and omega-squared type criteria in autoregression},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--61},
year = {2019},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a9/}
}
M. V. Boldin. Local power of Kolmogorov’s and omega-squared type criteria in autoregression. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a9/
[1] Boldin M.V., “Otsenka raspredeleniya vozmuschenii v skheme avtoregressii”, Teoriya veroyatn. i ee primen., 27:4 (1982), 905–910 | MR
[2] Anderson T.V., The statistical analysis of time series, J. Wiley and Sons Inc., N.Y., 1971 | MR | Zbl
[3] Billingsley P., Convergence of probability measures, J. Wiley and Sons Inc., N.Y., 1968 | MR | Zbl
[4] Chibisov D.M., “K issledovaniyu asimptoticheskoi moschnosti kriteriev soglasiya”, Teoriya veroyatn. i ee primen., 10:3 (1965), 460–478
[5] Boldin M.V., Petriev M.N., “On the empirical distribution function of residuals in autoregression with outliers and Pearson's chi-square type tests”, Math. Methods Statist., 27:4 (2018), 1–17 | DOI | MR