Quasiuniversal Boolean automaton with four constant states
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 51-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of realization of Boolean functions by initial Boolean automata with constant states and $n$ inputs is considered. Initial Boolean automaton with constant states and $n$ inputs is an initial automaton with output such that in all states output functions are $n$-ary constant Boolean functions $0$ or $1$. An example of an initial Boolean automaton with the minimum number of constant states and $n$ inputs realizing the maximum possible number of $n$-ary Boolean functions, where $n \geq 3$, is constructed.
@article{VMUMM_2019_6_a7,
     author = {L. N. Sysoeva},
     title = {Quasiuniversal {Boolean} automaton with four constant states},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     year = {2019},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a7/}
}
TY  - JOUR
AU  - L. N. Sysoeva
TI  - Quasiuniversal Boolean automaton with four constant states
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 51
EP  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a7/
LA  - ru
ID  - VMUMM_2019_6_a7
ER  - 
%0 Journal Article
%A L. N. Sysoeva
%T Quasiuniversal Boolean automaton with four constant states
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 51-55
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a7/
%G ru
%F VMUMM_2019_6_a7
L. N. Sysoeva. Quasiuniversal Boolean automaton with four constant states. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a7/

[1] Kuzmin V.A., “Realizatsiya funktsii algebry logiki avtomatami, normalnymi algorifmami i mashinami Tyuringa”, Problemy kibernetiki, 1965, no. 13, 75–96 | Zbl

[2] To Suan Zung, “Ob asimptoticheskikh zakonomernostyakh slozhnosti avtomatov iz nekotorykh klassov”, Problemy kibernetiki, 1970, no. 22, 5–44

[3] Orlov V.A., “O slozhnosti realizatsii ogranichenno-determinirovannykh operatorov skhemami v avtomatnykh bazisakh”, Problemy kibernetiki, 1973, no. 26, 141–182 | Zbl

[4] Kibkalo M.A., Avtomatnaya slozhnost bulevykh funktsii iz klassov Posta, Kand. dis., M., 2013

[5] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2006

[6] A. B. Ugolnikov (red.), Konspekt lektsii O. B. Lupanova po kursu “Vvedenie v matematicheskuyu logiku”, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2007

[7] Sysoeva L.N., “Maksimalnoe chislo bulevykh funktsii, realizuemykh initsialnym bulevym avtomatom s dvumya konstantnymi sostoyaniyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 4, 12–17 | MR | Zbl

[8] Sysoeva L.N., “Otsenki chisla bulevykh funktsii, realizuemykh initsialnym bulevym avtomatom s tremya konstantnymi sostoyaniyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 2, 19–28 | MR | Zbl

[9] Sysoeva L.N., “Kvaziuniversalnye initsialnye bulevy avtomaty s konstantnymi sostoyaniyami”, Mat-ly XII Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya” imeni akademika O.B. Lupanova (Moskva, MGU, 20–25 iyunya 2016 g.), ed. O. M. Kasim-Zade, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2016, 229–232