@article{VMUMM_2019_6_a4,
author = {M. V. Shamolin},
title = {Integrable systems with many degrees of freedom and with dissipation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {29--38},
year = {2019},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/}
}
M. V. Shamolin. Integrable systems with many degrees of freedom and with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 29-38. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/
[1] Shamolin M.V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Ch. 1”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 134, 2017, 6–128
[2] Shamolin M.V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Ch. 2”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 135, 2017, 3–93
[3] Shamolin M.V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN, 475:5 (2017), 519–523 | MR
[4] Shamolin M.V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN, 477:2 (2017), 168–172 | DOI | MR
[5] Shamolin M.V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN, 479:3 (2018), 270–276 | DOI | MR
[6] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[7] Dubrovin B.A., Novikov S.P., “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 219:2 (1984), 228–237
[8] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[9] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[10] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl
[11] Shamolin M.V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fund. i prikl. matem., 20:4 (2015), 3–231 | MR