Integrable systems with many degrees of freedom and with dissipation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 29-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, we show the integrability of certain classes of dynamic systems on the tangent bundle to a multi-dimensional manifold. In this case, the force fields have variable dissipation and generalize the cases considered previously.
@article{VMUMM_2019_6_a4,
     author = {M. V. Shamolin},
     title = {Integrable systems with many degrees of freedom and with dissipation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--38},
     publisher = {mathdoc},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable systems with many degrees of freedom and with dissipation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 29
EP  - 38
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/
LA  - ru
ID  - VMUMM_2019_6_a4
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable systems with many degrees of freedom and with dissipation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 29-38
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/
%G ru
%F VMUMM_2019_6_a4
M. V. Shamolin. Integrable systems with many degrees of freedom and with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 29-38. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a4/