Spectral characteristics of the Sturm--Liouville operator under minimal restrictions on smoothness of coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 23-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the Sturm–Liouville problem in general form with Dirichlet boundary conditions under the minimal smoothness assumptions for the coefficients. We obtain the asymptotics formulas for eigenvalues and eigenfunctions of this problem. In assumption that $L^p$-norm of eigenfunctions is equal to 1, we get uniform estimates of the Chebyshev norm.
@article{VMUMM_2019_6_a3,
author = {V. E. Vladykina},
title = {Spectral characteristics of the {Sturm--Liouville} operator under minimal restrictions on smoothness of coefficients},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--28},
publisher = {mathdoc},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/}
}
TY - JOUR AU - V. E. Vladykina TI - Spectral characteristics of the Sturm--Liouville operator under minimal restrictions on smoothness of coefficients JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 23 EP - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/ LA - ru ID - VMUMM_2019_6_a3 ER -
%0 Journal Article %A V. E. Vladykina %T Spectral characteristics of the Sturm--Liouville operator under minimal restrictions on smoothness of coefficients %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 23-28 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/ %G ru %F VMUMM_2019_6_a3
V. E. Vladykina. Spectral characteristics of the Sturm--Liouville operator under minimal restrictions on smoothness of coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/