Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 23-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the Sturm–Liouville problem in general form with Dirichlet boundary conditions under the minimal smoothness assumptions for the coefficients. We obtain the asymptotics formulas for eigenvalues and eigenfunctions of this problem. In assumption that $L^p$-norm of eigenfunctions is equal to 1, we get uniform estimates of the Chebyshev norm.
@article{VMUMM_2019_6_a3,
     author = {V. E. Vladykina},
     title = {Spectral characteristics of the {Sturm{\textendash}Liouville} operator under minimal restrictions on smoothness of coefficients},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--28},
     year = {2019},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/}
}
TY  - JOUR
AU  - V. E. Vladykina
TI  - Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 23
EP  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/
LA  - ru
ID  - VMUMM_2019_6_a3
ER  - 
%0 Journal Article
%A V. E. Vladykina
%T Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 23-28
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/
%G ru
%F VMUMM_2019_6_a3
V. E. Vladykina. Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a3/

[1] Fulton C.T., Pruess S., Xie Yu., “The automatic classification of Sturm–Liouville problems”, J. Appl. Math. Comput., 124 (2005), 149–186

[2] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970

[3] Naimark M.A., Lineinye differentsialnye operatory, Fizmatlit, M., 2010 | MR

[4] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. matem. o-va, 64, 2003, 159–212 | Zbl

[5] Shkalikov A.A., Vladykina V.E., “Asymptotics of the solutions of the Sturm–Liouville equation with singular coefficients”, Math. Notes, 99:5 (2015), 891–899 | DOI | MR

[6] Vladykina V.E., “Asimptotika fundamentalnykh reshenii uravneniya Shturma–Liuvillya po spektralnomu parametru”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 1, 57–61 | MR | Zbl

[7] Yakubov V.Ya., “Neklassicheskie dvustoronnie tochnye otsenki dlya normirovannykh sobstvennykh funktsii zadachi Shturma–Liuvillya”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 4, 37–44 | Zbl

[8] Yakubov V.Ya., “Ogranichennost normirovannykh sobstvennykh funktsii zadachi Shturma–Liuvillya pri minimalnykh ogranicheniyakh na gladkost koeffitsientov”, Differents. uravneniya, 30:8 (1994), 1465–1467 | MR | Zbl

[9] Shkalikov A.A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. Seminara im. I.G. Petrovskogo, 9, 1983, 190–229 | Zbl