Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 14-22
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The cascade search principle for zeros of $(\alpha,\beta)$-search functionals and consequent fixed point and coincidence theorems are proved for collections of single-valued and set-valued mappings of $(b_1,b_2)$-quasimetric spaces. These results are extensions of some previous author's results in metric spaces. In particular, a generalization is obtained for some recent result on coincidences of a covering mapping and a Lipshitzian mappings of $(b_1,b_2)$-quasimetric spaces.
@article{VMUMM_2019_6_a2,
     author = {T. N. Fomenko},
     title = {Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--22},
     year = {2019},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a2/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 14
EP  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a2/
LA  - ru
ID  - VMUMM_2019_6_a2
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 14-22
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a2/
%G ru
%F VMUMM_2019_6_a2
T. N. Fomenko. Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 14-22. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a2/

[1] Fomenko T.N., “Approximation of coincidence points and common fixed points of a collection of mappings of metric spaces”, Math. Notes, 86:1 (2009), 107–120 | DOI | DOI | MR | Zbl

[2] Fomenko T.N., “Cascade search of the coincidence set of collections of multivalued mappings”, Math. Notes, 86:1–2 (2009), 276–281 | DOI | DOI | MR | Zbl

[3] Fomenko T.N., “Cascade search principle and its applications to the coincidence problem of $n$ one-valued or multi-valued mappings”, Topol. and its Appl., 157 (2010), 760–773 | DOI | MR | Zbl

[4] Arutyunov A.V., Greshnov A.V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272 | DOI | DOI | MR | Zbl

[5] Fomenko T.N., “Fixed points and coincidences of mapping families between ordered sets and some metrical consequences”, Izv. Math., 83:1 (2019), 151–172 | DOI | MR | Zbl

[6] Czerwik S., “Contraction mappings in $b$-metric spaces”, Acta Math. et Inform. Univ. Ostraviensis, 1:1 (1993), 5–11 | MR | Zbl

[7] Czerwik S., “Nonlinear set-valued contraction mappings in $b$-metric spaces”, Atti Semin. Mat. e Fis. Univ. Modena, 46:2 (1998), 263–276 | MR | Zbl