Minimax optimization for a system of line-of-sight stabilization
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 64-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the problem of minimax stabilization of the line of sight in the vicinity of the program trajectory is given. The motion of this line is described by a system of fourth-order linear differential equations. In the problem, perturbations are represented as deviations of the initial position from zero as well as constant perturbations. Stabilization is carried out through linear feedback. The feedback coefficients are calculated as optimal for the worst possible perturbations.
@article{VMUMM_2019_6_a11,
     author = {V. V. Latonov},
     title = {Minimax optimization for a system of line-of-sight stabilization},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--68},
     year = {2019},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a11/}
}
TY  - JOUR
AU  - V. V. Latonov
TI  - Minimax optimization for a system of line-of-sight stabilization
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 64
EP  - 68
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a11/
LA  - ru
ID  - VMUMM_2019_6_a11
ER  - 
%0 Journal Article
%A V. V. Latonov
%T Minimax optimization for a system of line-of-sight stabilization
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 64-68
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a11/
%G ru
%F VMUMM_2019_6_a11
V. V. Latonov. Minimax optimization for a system of line-of-sight stabilization. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 64-68. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a11/

[1] Alexandrov V.V., Bugrov D.I., Corona M.G., Tikhonova K.V., “Tent-method application for minmax stabilization and maxmin testing”, IMA J. Math. Control and Inform., 34:1 (2017), 15–25 | MR | Zbl

[2] Aleksandrova O.V., Kozik A.A., “Minimaksnaya optimizatsiya parametrov stabilizatsii programmnogo poleta”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 3, 45–49

[3] Aleksandrov V.V., Ramirez Gutierez Kh.A., “Algoritm minimaksnoi stabilizatsii lineinykh sistem tretego poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 47–52 | Zbl

[4] Kharitonov V.L., “Ob asimptoticheskoi ustoichivosti polozheniya ravnovesiya semeistva sistem lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 14:4 (1978), 2086–2088 | MR | Zbl

[5] Latonov V.V., Tikhomirov V.V., “Upravlenie liniei vizirovaniya tseli po videoizobrazheniyu”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 53–59

[6] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002

[7] Boltyanskii V.G., “Metod shatrov v teorii ekstremalnykh zadach”, Uspekhi matem. nauk, 30:3(183) (1975), 3–55 | MR