Solution of the Cauchy problem for the heat equation on the Heisenberg group and the Wiener integral
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 8-14
Voir la notice de l'article provenant de la source Math-Net.Ru
The issues related to applications of functional integrals to evolution equations are studied. In particular, this is the problem of representation of solutions to the Cauchy problem for the heat equation in the three-parameter Heisenberg group $H_3(\mathbb{R})$ in terms of Wiener integral in the space of trajectories from $C[0,t]\times C[0,t]$.
@article{VMUMM_2019_6_a1,
author = {S. V. Mamon},
title = {Solution of the {Cauchy} problem for the heat equation on the {Heisenberg} group and the {Wiener} integral},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--14},
publisher = {mathdoc},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a1/}
}
TY - JOUR AU - S. V. Mamon TI - Solution of the Cauchy problem for the heat equation on the Heisenberg group and the Wiener integral JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 8 EP - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a1/ LA - ru ID - VMUMM_2019_6_a1 ER -
%0 Journal Article %A S. V. Mamon %T Solution of the Cauchy problem for the heat equation on the Heisenberg group and the Wiener integral %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 8-14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a1/ %G ru %F VMUMM_2019_6_a1
S. V. Mamon. Solution of the Cauchy problem for the heat equation on the Heisenberg group and the Wiener integral. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2019), pp. 8-14. http://geodesic.mathdoc.fr/item/VMUMM_2019_6_a1/