Approaching real numbers by sums of squares of two primes
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that a given real number $N>N_0(\varepsilon)$ can be approached by the sum of squares of two primes to the distance not exceeding $H = N^{31/64-1/300 + \varepsilon}$, where $\varepsilon$ is an arbitrary positive number.
			
            
            
            
          
        
      @article{VMUMM_2019_5_a9,
     author = {A. P. Naumenko},
     title = {Approaching real numbers by sums of squares of two primes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/}
}
                      
                      
                    A. P. Naumenko. Approaching real numbers by sums of squares of two primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/
