Approaching real numbers by sums of squares of two primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a given real number $N>N_0(\varepsilon)$ can be approached by the sum of squares of two primes to the distance not exceeding $H = N^{31/64-1/300 + \varepsilon}$, where $\varepsilon$ is an arbitrary positive number.
@article{VMUMM_2019_5_a9,
     author = {A. P. Naumenko},
     title = {Approaching real numbers by sums of squares of two primes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     publisher = {mathdoc},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/}
}
TY  - JOUR
AU  - A. P. Naumenko
TI  - Approaching real numbers by sums of squares of two primes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 51
EP  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/
LA  - ru
ID  - VMUMM_2019_5_a9
ER  - 
%0 Journal Article
%A A. P. Naumenko
%T Approaching real numbers by sums of squares of two primes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 51-55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/
%G ru
%F VMUMM_2019_5_a9
A. P. Naumenko. Approaching real numbers by sums of squares of two primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/