Approaching real numbers by sums of squares of two primes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a given real number $N>N_0(\varepsilon)$ can be approached by the sum of squares of two primes to the distance not exceeding $H = N^{31/64-1/300 + \varepsilon}$, where $\varepsilon$ is an arbitrary positive number.
@article{VMUMM_2019_5_a9,
     author = {A. P. Naumenko},
     title = {Approaching real numbers by sums of squares of two primes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/}
}
TY  - JOUR
AU  - A. P. Naumenko
TI  - Approaching real numbers by sums of squares of two primes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 51
EP  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/
LA  - ru
ID  - VMUMM_2019_5_a9
ER  - 
%0 Journal Article
%A A. P. Naumenko
%T Approaching real numbers by sums of squares of two primes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 51-55
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/
%G ru
%F VMUMM_2019_5_a9
A. P. Naumenko. Approaching real numbers by sums of squares of two primes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a9/

[1] Huxley M.N., “On the difference between consequtive primes”, Invent. Math., 15:1 (1972), 164–170 | MR | Zbl

[2] Gritsenko S.A., “Utochnenie odnoi konstanty v plotnostnoi teoreme”, Matem. zametki, 55:2 (1994), 59–61 | Zbl

[3] Voronin S.M., Karatsuba A.A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[4] Baker R.C., Harman G., Pintz J., “The difference between consecutive primes, II”, Proc. London Math. Soc., 83:3 (2001), 89–122 | DOI | MR

[5] Gritsenko S.A., Nguen Tkhi Cha., “O diofantovykh neravenstvakh s prostymi chislami”, Nauch. ved. BelGU, 17:29 (2012), 113–118

[6] Naumenko A.P., “O nelineinykh diofantovykh neravenstvakh s prostymi chislami”, Tr. XV Mezhdunar. konf. “Algebra, teoriya chisel i diskretnaya geometriya” (Tula, 2018), 239–241

[7] Ivic A., The Riemann zeta-function, John Wiley and Sons, N.Y., 1985 | MR | Zbl

[8] Karatsuba A.A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR