Some properties of oscillation indicators of solutions to a two-dimensional system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 48-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that all strong exponents of oscillations considered as functionals on the set of solutions to linear homogeneous two-dimensional differential systems with continuous coefficients bounded on the semi-line are not residual (i.e. can be changed when changing solution on a finite interval). An example of two-dimensional system is provided with a solution that has all strong oscillation exponents differing from corresponding weak exponents.
@article{VMUMM_2019_5_a8,
     author = {A. Kh. Stash},
     title = {Some properties of oscillation indicators of solutions to a two-dimensional system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a8/}
}
TY  - JOUR
AU  - A. Kh. Stash
TI  - Some properties of oscillation indicators of solutions to a two-dimensional system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 48
EP  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a8/
LA  - ru
ID  - VMUMM_2019_5_a8
ER  - 
%0 Journal Article
%A A. Kh. Stash
%T Some properties of oscillation indicators of solutions to a two-dimensional system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 48-51
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a8/
%G ru
%F VMUMM_2019_5_a8
A. Kh. Stash. Some properties of oscillation indicators of solutions to a two-dimensional system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a8/

[1] Sergeev I.N., “Opredelenie polnykh chastot reshenii lineinoi sistemy”, Differents. uravneniya, 45:6 (2009), 908

[2] Sergeev I.N., “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matem. sb., 204 (2013), 119–138 | DOI | Zbl

[3] Sergeev I.N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. seminara im. I.G. Petrovskogo, 9, 1983, 111–166 | Zbl

[4] Sergeev I.N., “Koleblemost i bluzhdaemost reshenii differentsialnogo uravneniya vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 6, 21–26 | Zbl

[5] Stash A.Kh., “O nekotorykh svoistvakh polnykh i vektornykh giperchastot reshenii dvumernoi differentsialnoi sistemy”, Vestn. Adygeiskogo gos. un-ta. Ser. Estestv.-matem. i tekhn. nauki, 2017, no. 2(201), 31–34 | MR