Some convergence tests for Fourier series with respect to Vilenkin system in the case of unbounded $p_k$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 42-44
Cet article a éte moissonné depuis la source Math-Net.Ru
Series with respect to a system of characters of a zero-dimensional compact commutative group are considered. A generalization of the analogue of Dini test and its corollary obtained earlier for systems determined by bounded sequencees $\{p_k\}$ are proved.
@article{VMUMM_2019_5_a6,
author = {S. M. Voronov},
title = {Some convergence tests for {Fourier} series with respect to {Vilenkin} system in the case of unbounded $p_k$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {42--44},
year = {2019},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a6/}
}
TY - JOUR AU - S. M. Voronov TI - Some convergence tests for Fourier series with respect to Vilenkin system in the case of unbounded $p_k$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 42 EP - 44 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a6/ LA - ru ID - VMUMM_2019_5_a6 ER -
%0 Journal Article %A S. M. Voronov %T Some convergence tests for Fourier series with respect to Vilenkin system in the case of unbounded $p_k$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 42-44 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a6/ %G ru %F VMUMM_2019_5_a6
S. M. Voronov. Some convergence tests for Fourier series with respect to Vilenkin system in the case of unbounded $p_k$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 42-44. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a6/
[1] Vilenkin N.Ya., “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11 (1947), 363–400 | Zbl
[2] Agaev G.N., Vilenkin N.Ya., Dzhafarli G.M., Rubinshtein A.I., Multiplikativnye sistemy funktsii i analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR
[3] Dzhafarli G.M., “O skhodimosti ryadov Fure po odnomu klassu ortonormirovannykh multiplikativnykh sistem”, Izv. AN AzSSR. Seriya fiz.-matem. i tekhn. nauk, 4 (1962), 17–36 | MR | Zbl