Theory of ideal disperse systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 65-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses the possibility of constructing a mathematical model of dispersion systems of a similar theory of ideal gases.
@article{VMUMM_2019_5_a13,
     author = {Ya. D. Yankov},
     title = {Theory of ideal disperse systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a13/}
}
TY  - JOUR
AU  - Ya. D. Yankov
TI  - Theory of ideal disperse systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 65
EP  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a13/
LA  - ru
ID  - VMUMM_2019_5_a13
ER  - 
%0 Journal Article
%A Ya. D. Yankov
%T Theory of ideal disperse systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 65-69
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a13/
%G ru
%F VMUMM_2019_5_a13
Ya. D. Yankov. Theory of ideal disperse systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a13/

[1] Yankov Ya.D., Sovremennaya teoriya dispersnykh sistem, Dep. v VINITI RAN 30.08.2016, No 123-V2016, M., 2016

[2] Yankov Ya.D., “Granichnye usloviya v sovremennoi teorii dispersnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 33–39

[3] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya v gazovoi dinamike, Nauka, M., 1978 | MR

[4] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986 | MR

[5] Zhdanov S.K., Trubnikov B.A., Kvazigazovye neustoichivye sredy, Nauka, M., 1991