Geometrical description of orbits of automorphism group of affine toric varieties
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 55-58
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be an affine toric variety over an algebraically closed field of characteristic zero. In this paper we describe orbits of connected component of identity of automorphism group in terms of dimensions of tangent spaces of the variety $X$. We also present a formula to calculate these dimensions.
@article{VMUMM_2019_5_a10,
     author = {A. A. Shafarevich},
     title = {Geometrical description of orbits of automorphism group of affine toric varieties},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--58},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a10/}
}
TY  - JOUR
AU  - A. A. Shafarevich
TI  - Geometrical description of orbits of automorphism group of affine toric varieties
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 55
EP  - 58
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a10/
LA  - ru
ID  - VMUMM_2019_5_a10
ER  - 
%0 Journal Article
%A A. A. Shafarevich
%T Geometrical description of orbits of automorphism group of affine toric varieties
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 55-58
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a10/
%G ru
%F VMUMM_2019_5_a10
A. A. Shafarevich. Geometrical description of orbits of automorphism group of affine toric varieties. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 55-58. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a10/

[1] Ramanujam C., “A note on automorphism group of algebraic varieties”, Math. Ann., 156:1 (1964), 25–33 | DOI | MR | Zbl

[2] Arzhantsev I.V., Zaidenberg M.G., Kuyumzhiyan K.G., “Mnogoobraziya flagov, toricheskie mnogoobraziya i nadstroiki: tri primera beskonechnoi tranzitivnosti”, Matem. sb., 203:7 (2012), 3–30 | DOI | MR | Zbl

[3] Bazhov I., “On orbits of the automorphism group on a complete toric variety”, Beitr. Algebra und Geometrie, 54:2 (2013), 471–481 | DOI | MR | Zbl

[4] Arzhantsev I., Bazhov I., “On orbits of the automorphism group on an affine toric variety”, Open Math., 11:10 (2013), 1713–1724 | DOI | MR | Zbl

[5] Cox D., Little J., Schenck H., Toric Varieties, Amer. Math. Soc., Providence, 2011 | MR | Zbl