Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic properties of the coefficients of orthorecursive expansion over a system of indicators of dyadic intervals associated with local properties of the expanded function are studied. Asymptotic formulas are obtained in the cases of differentiable functions and functions having a discontinuity of the first kind at the point under study.
@article{VMUMM_2019_5_a0,
     author = {I. S. Baranova},
     title = {Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/}
}
TY  - JOUR
AU  - I. S. Baranova
TI  - Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 3
EP  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/
LA  - ru
ID  - VMUMM_2019_5_a0
ER  - 
%0 Journal Article
%A I. S. Baranova
%T Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 3-10
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/
%G ru
%F VMUMM_2019_5_a0
I. S. Baranova. Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/

[1] Lukashenko T.P., “Ob ortorekursivnikh razlozheniyakh po sisteme Fabera–Shaudera”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 10-i Saratovskoi zimnei shkoly, Izd-vo Saratov. un-ta, Saratov, 2000, 83

[2] Lukashenko T.P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Matem. Mekhan., 2001, no. 1, 6–10 | Zbl

[3] Galatenko V.V., “Ob ortorekursivnom razlozhenii s oshibkami v vychislenii koeffitsientov”, Izv. RAN. Ser. matem., 69:1 (2005), 3–16 | DOI | MR | Zbl

[4] Galatenko V.V., “Ob ortorekursivnom razlozhenii po nekotoroi sisteme funktsii s oshibkami pri vychislenii koeffitsientov”, Matem. sb., 195:7 (2004), 21–36 | DOI | MR | Zbl

[5] Kudryavtsev A.Yu., “O skhodimosti ortorekursivnykh razlozhenii po neortogonalnym vspleskam”, Matem. zametki, 92:5 (2012), 707–720 | DOI | MR | Zbl

[6] Kudryavtsev A.Yu., “O skorosti skhodimosti ortorekursivnykh razlozhenii po neortogonalnym vspleskam”, Izv. RAN. Ser. matem., 76:4 (2012), 49–64 | DOI | MR | Zbl

[7] Politov A.V., “Ortorekursivnye razlozheniya v gilbertovykh prostranstvakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 3, 3–7 | MR | Zbl

[8] Politov A.V., “Kriterii skhodimosti ortorekursivnykh razlozhenii v evklidovykh prostranstvakh”, Matem. zametki, 93:4 (2013), 637–640 | DOI | MR | Zbl