Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic properties of the coefficients of orthorecursive expansion over a system of indicators of dyadic intervals associated with local properties of the expanded function are studied. Asymptotic formulas are obtained in the cases of differentiable functions and functions having a discontinuity of the first kind at the point under study.
@article{VMUMM_2019_5_a0,
author = {I. S. Baranova},
title = {Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--10},
publisher = {mathdoc},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/}
}
TY - JOUR AU - I. S. Baranova TI - Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 3 EP - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/ LA - ru ID - VMUMM_2019_5_a0 ER -
%0 Journal Article %A I. S. Baranova %T Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 3-10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/ %G ru %F VMUMM_2019_5_a0
I. S. Baranova. Asymptotic properties of coefficients of orthorecursive expansions over indicators of dyadic intervals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2019), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2019_5_a0/