@article{VMUMM_2019_4_a9,
author = {A. V. Makarov and V. V. Makarov},
title = {Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--58},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/}
}
TY - JOUR
AU - A. V. Makarov
AU - V. V. Makarov
TI - Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2019
SP - 57
EP - 58
IS - 4
UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/
LA - ru
ID - VMUMM_2019_4_a9
ER -
%0 Journal Article
%A A. V. Makarov
%A V. V. Makarov
%T Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 57-58
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/
%G ru
%F VMUMM_2019_4_a9
A. V. Makarov; V. V. Makarov. Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 57-58. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/
[1] Makarov A. V., “O gomomorfizmakh funktsionalnykh sistem mnogoznachnykh logik”, Matematicheskie voprosy kibernetiki, 4, Nauka, M., 1992, 5–29
[2] Makarov A. V., “Opisanie vsekh minimalnykh klassov v chastichno uporyadochennom mnozhestve ${\mathfrak{\cal L}}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 1, 65–66 | Zbl
[3] Makarov A. V., Makarov V. V., “Schetnost chisla zamknutykh nadklassov nekotorykh minimalnykh klassov v chastichno uporyadochennom mnozhestve ${\mathfrak{\cal L}}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 1, 62–64 | Zbl
[4] Bokov G. V., “Reshetka zamknutykh klassov trekhznachnoi logiki, soderzhaschikh funktsiyu maksimuma dlya nelineinogo chastichnogo poryadka”, Mat-ly XII Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya” imeni akademika O. B. Lupanova, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2016, 187–190