Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 57-58

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the set of closed classes containing some minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes in the three-valued logic that can be homomorphically mapped onto the two-valued logic has continuum cardinality.
@article{VMUMM_2019_4_a9,
     author = {A. V. Makarov and V. V. Makarov},
     title = {Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--58},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/}
}
TY  - JOUR
AU  - A. V. Makarov
AU  - V. V. Makarov
TI  - Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 57
EP  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/
LA  - ru
ID  - VMUMM_2019_4_a9
ER  - 
%0 Journal Article
%A A. V. Makarov
%A V. V. Makarov
%T Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 57-58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/
%G ru
%F VMUMM_2019_4_a9
A. V. Makarov; V. V. Makarov. Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set $\mathcal{L}^3_2$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 57-58. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a9/