Generalized realizability for extensions of arithmetic language
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $L$ be an extension of the language of arithmetic, $V$ be a class of number-theoretical functions. A notion of the $V$-realizability for $L$-formulas is defined in such a way that indexes of functions in $V$ are used for interpreting the implication and the universal quantifier. It is proved that the semantics for $L$ based on the $V$-realizability coincides with the classic semantics iff $V$ contains all $L$-definable functions.
			
            
            
            
          
        
      @article{VMUMM_2019_4_a7,
     author = {A. Yu. Konovalov},
     title = {Generalized realizability for extensions of arithmetic language},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--54},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/}
}
                      
                      
                    A. Yu. Konovalov. Generalized realizability for extensions of arithmetic language. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/
