Generalized realizability for extensions of arithmetic language
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $L$ be an extension of the language of arithmetic, $V$ be a class of number-theoretical functions. A notion of the $V$-realizability for $L$-formulas is defined in such a way that indexes of functions in $V$ are used for interpreting the implication and the universal quantifier. It is proved that the semantics for $L$ based on the $V$-realizability coincides with the classic semantics iff $V$ contains all $L$-definable functions.
@article{VMUMM_2019_4_a7,
author = {A. Yu. Konovalov},
title = {Generalized realizability for extensions of arithmetic language},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {50--54},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/}
}
A. Yu. Konovalov. Generalized realizability for extensions of arithmetic language. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/
[1] Konovalov A. Yu., Plisko V. E., “O giperarifmeticheskoi realizuemosti”, Matem. zametki, 98:5 (2015), 725–746 | DOI | MR | Zbl
[2] Konovalov A. Yu., “Arifmeticheskaya realizuemost i bazisnaya logika”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 1, 52–56 | Zbl
[3] Salehi S., “Provably total functions of basic arithmetic”, Math. Log. Quart., 49:3 (2003), 316–322 | DOI | MR | Zbl
[4] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957