Generalized realizability for extensions of arithmetic language
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be an extension of the language of arithmetic, $V$ be a class of number-theoretical functions. A notion of the $V$-realizability for $L$-formulas is defined in such a way that indexes of functions in $V$ are used for interpreting the implication and the universal quantifier. It is proved that the semantics for $L$ based on the $V$-realizability coincides with the classic semantics iff $V$ contains all $L$-definable functions.
@article{VMUMM_2019_4_a7,
     author = {A. Yu. Konovalov},
     title = {Generalized realizability for extensions of arithmetic language},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--54},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/}
}
TY  - JOUR
AU  - A. Yu. Konovalov
TI  - Generalized realizability for extensions of arithmetic language
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 50
EP  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/
LA  - ru
ID  - VMUMM_2019_4_a7
ER  - 
%0 Journal Article
%A A. Yu. Konovalov
%T Generalized realizability for extensions of arithmetic language
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 50-54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/
%G ru
%F VMUMM_2019_4_a7
A. Yu. Konovalov. Generalized realizability for extensions of arithmetic language. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a7/