Asymptotics of Feynman integrals in the one-dimensional case
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 46-50
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotics of the Feynman integrals of the form $\mathcal{F}(t)=\int\limits_{0}^{+\infty}(P(x,t))^{-\lambda}dx$ is studied for $t\rightarrow +0$. The first term of the asymptotics is calculated in the general case and a method for obtaining a complete asymptotic expansion in the case of one essential face is presented.
@article{VMUMM_2019_4_a6,
author = {T. Yu. Semenova},
title = {Asymptotics of {Feynman} integrals in the one-dimensional case},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--50},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a6/}
}
T. Yu. Semenova. Asymptotics of Feynman integrals in the one-dimensional case. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a6/
[1] Beneke M., Smirnov V. A., “Asymptotic expansion of Feynman integrals near threshold”, Nucl. Phys. B, 522 (1998), 321–344 | DOI | MR
[2] Pak A., Smirnov A. V., “Geometric approach to asymptotic expansion of Feynman integrals”, Eur. Phys. J. C, 71 (2011), 1626–1631 | DOI | MR
[3] Lee R. N., Pomeransky A. A., Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals, arXiv: 1707.07856 [hep-th]
[4] Semenova T. Yu., Smirnov A. V., Smirnov V. A., “On the status of expansion by regions”, Eur. Phys. J. C, 79 (2019), 136–147 | DOI