Effect of the initial stage of strain on the properties of relaxation curves generated by the Rabotnov nonlinear relation for viscoelastic materials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 28-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general equation of stress relaxation curves family generated by the Rabotnov nonlinear constitutive equation (with two arbitrary material functions) under arbitrary strain histories at initial stage of deformation up to a given strain level is derived and studied analytically. The effect of the initial stage duration and shape on the properties of the relaxation curves is examined. Effective general bounds are obtained for differences of relaxation curves with different initial programs of deformation up to a given level and for their deviation from the relaxation curve under step loading via material functions and initial programs norms. As the rise time tends to zero, the convergence of the relaxation curves family (with a fixed strain level and initial stage shape) to the relaxation curve under step loading is proved.
@article{VMUMM_2019_4_a3,
     author = {A. V. Khokhlov},
     title = {Effect of the initial stage of strain on the properties of relaxation curves generated by the {Rabotnov} nonlinear relation for viscoelastic materials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {28--33},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a3/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Effect of the initial stage of strain on the properties of relaxation curves generated by the Rabotnov nonlinear relation for viscoelastic materials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 28
EP  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a3/
LA  - ru
ID  - VMUMM_2019_4_a3
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Effect of the initial stage of strain on the properties of relaxation curves generated by the Rabotnov nonlinear relation for viscoelastic materials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 28-33
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a3/
%G ru
%F VMUMM_2019_4_a3
A. V. Khokhlov. Effect of the initial stage of strain on the properties of relaxation curves generated by the Rabotnov nonlinear relation for viscoelastic materials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 28-33. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a3/

[1] Rabotnov Yu. N., “Ravnovesie uprugoi sredy s posledeistviem”, Prikl. matem. i mekhan., 12:1 (1948), 53–62 | MR | Zbl

[2] Namestnikov V. S., Rabotnov Yu. N., “O nasledstvennykh teoriyakh polzuchesti”, Prikl. matem. i teor. fiz., 2:4 (1961), 148–150

[3] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[4] Dergunov N. N., Papernik L. Kh., Rabotnov Yu. N., “Analiz povedeniya grafita na osnove nelineinoi nasledstvennoi teorii ”, Prikl. matem. i teor. fiz., 12:2 (1971), 76–82

[5] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[6] Suvorova Yu. V., “O nelineino-nasledstvennom uravnenii Yu. N. Rabotnova i ego prilozheniyakh”, Izv. PAN. Mekhan. tverdogo tela, 2004, no. 1, 174–181

[7] Alekseeva S. I., Fronya M. A., Viktorova I. V., “Analiz vyazkouprugikh svoistv polimernykh kompozitov s uglerodnymi nanonapolnitelyami”, Kompozity i nanostruktury, 2011, no. 2, 28–39

[8] Fung Y. C., “Stress-strain history relations of soft tissues in simple elongation”, Biomechanics, Its Foundations and Objectives, eds. Y.C. Fung et al., Prentice-Hall, New Jersey, 1972, 181–208

[9] Fung Y. C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, N.Y., 1993

[10] De Frate L. E., Li G., “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomech. Model. Mechanobiol., 6:4 (2007), 245–251 | DOI

[11] Lakes R. S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009

[12] De Pascalis R., Abrahams I. D., Parnell W. J., “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proc. Roy. Soc. A, 470 (2014), 20140058 | DOI

[13] Khokhlov A. V., “Asimptotika krivykh polzuchesti, porozhdennykh nelineinoi teoriei nasledstvennosti Rabotnova pri kusochno-postoyannykh nagruzheniyakh, i usloviya zatukhaniya pamyati”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 5, 26–31 | Zbl

[14] Khokhlov A. V., “Analiz obschikh svoistv krivykh polzuchesti pri stupenchatom nagruzhenii, porozhdaemykh nelineinym sootnosheniem Rabotnova dlya vyazkouprugoplastichnykh materialov”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2017, no. 3, 93–123 | DOI

[15] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Materials, 54:4 (2018), 473–486 | DOI

[16] Khokhlov A. V., “O sposobnosti nelineinogo opredelyayuschego sootnosheniya Rabotnova dlya vyazkouprugoplastichnykh materialov modelirovat diagrammy deformirovaniya s padayuschim uchastkom”, Probl. prochnosti i plastichnosti, 80:4 (2018), 477–493

[17] Khokhlov A. V., “Svoistva semeistva diagramm deformirovaniya, porozhdaemykh nelineinym sootnosheniem Yu. N. Rabotnova dlya vyazkouprugoplastichnykh materialov”, Izv. RAN. Mekhan. tverdogo tela, 2019, no. 2, 29–47 | DOI

[18] Khokhlov A. V., “Modelirovanie zavisimosti krivykh polzuchesti pri rastyazhenii i koeffitsienta Puassona reonomnykh materialov ot gidrostaticheskogo davleniya s pomoschyu nelineino-nasledstvennogo sootnosheniya Rabotnova”, Mekhan. kompozitsionnykh materialov i konstruktsii, 24:3 (2018), 407–436 | DOI

[19] Adamov A. A., Matveenko V. P., Trufanov N. A., Shardakov I. N., Metody prikladnoi vyazkouprugosti, Izd-vo UrO RAN, Ekaterinburg, 2003

[20] Bergstrom J.S, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew, N.Y., 2015

[21] Khokhlov A. V., “Identifikatsiya nelineinoi modeli uprugovyazkoplastichnosti tipa Maksvella po krivym polzuchesti s nachalnoi stadiei nagruzheniya. Chast 1. Matematicheskii fundament”, Deformatsiya i razrushenie materialov, 2017, no. 9, 2–9

[22] Khokhlov A. V., “Dvustoronnie otsenki dlya funktsii relaksatsii lineinoi teorii nasledstvennosti cherez krivye relaksatsii pri ramp-deformirovanii i metodiki ee identifikatsii”, Izv. RAN. Mekhan. tverdogo tela, 2018, no. 3, 81–104 | DOI

[23] Khokhlov A. V., “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2018, no. 1, 65–95 | DOI | Zbl

[24] Lee S., Knauss W. G., “A note on the determination of relaxation and creep data from ramp tests”, Mech. Time-Dependent Materials, 4:1 (2000), 1–7 | DOI

[25] Sorvari J., Malinen M., “Determination of the relaxation modulus of a linearly viscoelastic material”, Mech. Time-Dependent Materials, 10:2 (2006), 125–133 | DOI

[26] Di Paola M., Fiore V., Pinnola F., Valenza A., “On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials”, Mech. Materials, 69:1 (2014), 63–70 | DOI