The gravity first (on reincarnation of third Kepler's law)
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

About four senturies ago considering flat sections of cone $x^2+y^2=z^2$ (along the axis of rotation on plane $Oxy$), Robert Hooke wrote one of fundamental differential equations $(x,y,z)^{\prime\prime}=-\frac{4 \pi^2k}{(\sqrt{x^2+y^2+z^2})^3}\cdot(x,y,z)$, which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in classical stationary Coulomb field. In the present work differential-algebraic models, arising as the result of replacement of cone with an arbitrary quadric surface $F(x,y,z)=0$ with respect to (called by us) Kepler parametrization of quadratic curves $\{F(x,y,\alpha\cdot x+\beta\cdot y+\delta)=0\:|\:\alpha,\beta,\delta\in K\},\:K=\mathbb{R},\mathbb{C}$, are proposed and studied.
@article{VMUMM_2019_4_a2,
     author = {O. V. Gerasimova and Yu. P. Razmyslov},
     title = {The gravity first (on reincarnation of third {Kepler's} law)},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--27},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
TI  - The gravity first (on reincarnation of third Kepler's law)
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 15
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/
LA  - ru
ID  - VMUMM_2019_4_a2
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%T The gravity first (on reincarnation of third Kepler's law)
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 15-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/
%G ru
%F VMUMM_2019_4_a2
O. V. Gerasimova; Yu. P. Razmyslov. The gravity first (on reincarnation of third Kepler's law). Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 15-27. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/