The gravity first (on reincarnation of third Kepler's law)
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 15-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

About four senturies ago considering flat sections of cone $x^2+y^2=z^2$ (along the axis of rotation on plane $Oxy$), Robert Hooke wrote one of fundamental differential equations $(x,y,z)^{\prime\prime}=-\frac{4 \pi^2k}{(\sqrt{x^2+y^2+z^2})^3}\cdot(x,y,z)$, which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in classical stationary Coulomb field. In the present work differential-algebraic models, arising as the result of replacement of cone with an arbitrary quadric surface $F(x,y,z)=0$ with respect to (called by us) Kepler parametrization of quadratic curves $\{F(x,y,\alpha\cdot x+\beta\cdot y+\delta)=0\:|\:\alpha,\beta,\delta\in K\},\:K=\mathbb{R},\mathbb{C}$, are proposed and studied.
@article{VMUMM_2019_4_a2,
     author = {O. V. Gerasimova and Yu. P. Razmyslov},
     title = {The gravity first (on reincarnation of third {Kepler's} law)},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--27},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
TI  - The gravity first (on reincarnation of third Kepler's law)
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 15
EP  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/
LA  - ru
ID  - VMUMM_2019_4_a2
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%T The gravity first (on reincarnation of third Kepler's law)
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 15-27
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/
%G ru
%F VMUMM_2019_4_a2
O. V. Gerasimova; Yu. P. Razmyslov. The gravity first (on reincarnation of third Kepler's law). Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 15-27. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a2/

[1] Razmyslov Yu. P., “An explanation (field equations in accordance with Tycho Brahe)”, J. Math. Sci., 191:5 (2013), 726–742 | DOI | MR | Zbl

[2] Gerasimova O. V., Differentsialno-algebraicheskie i geometricheskie osnovy tsentralnoi dinamiki na krivykh vtorogo poryadka, Kand. dis., M., 2014 | Zbl

[3] Razmyslov Yu. P., “Zakony katyaschikhsya simpleksov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 6, 38–42 | MR

[4] Gerasimova O. V., Razmyslov Yu. P., “Neaffinnykh differentsialno–algebraicheskikh krivykh ne suschestvuet”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 3, 3–8 | MR | Zbl

[5] Gerasimova O. V., Razmyslov Yu. P., “Frobeniusovy differentsialno-algebraicheskie universumy na kompleksnykh algebraicheskikh krivykh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 4, 3–8

[6] Pogudin G. A., “The primitive element theorem for differential fields with zero derivation on the base field”, J. Pure and Appl. Algebra, 219:9 (2015), 4035–4041 | DOI | MR | Zbl

[7] Pogudin G. A., “A differential analog of the Noether normalization lemma”, Int. Math. Res. Notices, 4 (2018), 1177–1199 | MR | Zbl

[8] Gerasimova O. V., Pogudin G. A., Razmyslov Yu. P., “Rolling simplexes and their commensurability, III (sootnosheniya Kapelli i ikh primenenie v differentsialnykh algebrakh)”, Fund. i prikl. matem., 19:6 (2014), 7–24 | MR

[9] Shafarevich I. R., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007

[10] Razmyslov Yu. P., “Rolling i soizmerimost simpleksov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 5, 55–58 | Zbl