@article{VMUMM_2019_4_a1,
author = {G. A. Krylova},
title = {Estimation of the large deviations parameter for a single-channel queueing system with regenerative input flow},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--14},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a1/}
}
TY - JOUR AU - G. A. Krylova TI - Estimation of the large deviations parameter for a single-channel queueing system with regenerative input flow JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 9 EP - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a1/ LA - ru ID - VMUMM_2019_4_a1 ER -
%0 Journal Article %A G. A. Krylova %T Estimation of the large deviations parameter for a single-channel queueing system with regenerative input flow %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 9-14 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a1/ %G ru %F VMUMM_2019_4_a1
G. A. Krylova. Estimation of the large deviations parameter for a single-channel queueing system with regenerative input flow. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a1/
[1] Ganesh A. J., O'Connell N., Wischik D. J., Big queues, Springer, Berlin, 2004 | MR | Zbl
[2] Afanasyeva L. G., Bashtova E. E., Tkachenko A. V., “Large deviations and statistical analysis for queueing systems with regenerative input flow”, 60th World Statistics Congress ISI2015 (Rio de Janeiro, Brazil, 2015), 1–6 | MR
[3] Sadowsky J. S., Szpankowski W., “The probability of large queue lengths and waiting times in a heterogeneous multiserver queue I: tight limits”, Adv. Appl. Probab., 27:2 (1995), 532–566 | DOI | MR | Zbl
[4] Baartfai P., “Large deviations in the queueing theory”, Period. math. hung., 2 (1972), 165–172 | DOI | MR
[5] den Hollander F., Large deviations, Fields Institute Monographs, 14, AMS, Providence, 2000 | MR | Zbl
[6] Majewski K., “Large deviations of the steady-state distribution of reflected processes with applications to queueing systems”, Queueing Systems, 29:2–4 (1998), 351–381 | DOI | MR | Zbl
[7] Wischik D., Moderate deviations in queueing theory, Preprint, 2001 https://www.cl.cam.ac.uk/d̃jw1005/Research/ucl_research/moddev.pdf | Zbl
[8] Aibatov S. Zh., Afanaseva L. G., “Subeskponentsialnaya asimptotika veroyatnostei bolshikh uklonenii dlya sistemy obsluzhivaniya s regeneriruyuschim vkhodyaschim potokom”, Teor. veroyatn. i ee primen., 62:3 (2017), 423–445 | DOI | MR
[9] Aibatov S. Zh., “Veroyatnosti bolshikh uklonenii dlya sistemy M/G/1/$\infty$ s nenadezhnym priborom”, Teor. veroyatn. i ee primen., 61:2 (2016), 378–384 | DOI | MR
[10] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Fizmatlit, M., 1972
[11] Duffield N. G., Lewis J. T., O'Connell N. et al., “Entropy of ATM traffic streams: a tool for estimating QoS parameters”, IEEE J. Selected Areas Communs., 13:6 (1995), 981–990 | DOI
[12] Duffy K. R., Meyn S. P., “Estimating Loynes' exponent”, Queueing Systems, 68:3–4 (2011), 285–293 | DOI | MR | Zbl
[13] Afanasyeva L. G., Bashtova E. E., “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing systems, 76:2 (2014), 125–147 | DOI | MR | Zbl