Algebras of Bernoulli distributions with a single limit point
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider systems of Boolean functions inducing algebras of Bernoulli distributions, whose universal set has a single limit point. We establish a criterion for an algebra generated by a given set of distributions to have a unique limit point.
@article{VMUMM_2019_4_a0,
     author = {A. D. Yashunskii},
     title = {Algebras of {Bernoulli} distributions with a single limit point},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a0/}
}
TY  - JOUR
AU  - A. D. Yashunskii
TI  - Algebras of Bernoulli distributions with a single limit point
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 3
EP  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a0/
LA  - ru
ID  - VMUMM_2019_4_a0
ER  - 
%0 Journal Article
%A A. D. Yashunskii
%T Algebras of Bernoulli distributions with a single limit point
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 3-9
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a0/
%G ru
%F VMUMM_2019_4_a0
A. D. Yashunskii. Algebras of Bernoulli distributions with a single limit point. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2019), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2019_4_a0/

[1] Salimov F. I., “Ob odnoi sisteme obrazuyuschikh dlya algebr nad sluchainymi velichinami”, Izv. vuzov. Matem., 1981, no. 5, 78–82 | Zbl

[2] Kolpakov R. M., “Kriterii porozhdeniya mnozhestv ratsionalnykh veroyatnostei v klasse bulevykh funktsii”, Diskretn. analiz i issled. oper. Ser. 1, 6:2 (1999), 41–61 | MR | Zbl

[3] Skhirtladze R. L., “O metode postroeniya bulevoi sluchainoi velichiny s zadannym raspredeleniem veroyatnostei”, Sb. nauch. tr., Diskretnyi analiz, 7, In-t matem. SO AN SSSR, Novosibirsk, 1966, 71–80

[4] Yashunsky A. D., “Clone-induced approximation algebras of Bernoulli distributions”, Algebra univers., 80:5 (2019), 1–16 | MR | Zbl

[5] Yashunskii A. D., “Konechnye algebry bernullievskikh raspredelenii”, Diskretn. matem., 30:2 (2018), 148–161 | DOI | MR