Reducibility of linear differential systems to linear differential equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 39-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.
@article{VMUMM_2019_3_a4,
     author = {I. N. Sergeev},
     title = {Reducibility of linear differential systems to linear differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--44},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a4/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Reducibility of linear differential systems to linear differential equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 39
EP  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a4/
LA  - ru
ID  - VMUMM_2019_3_a4
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Reducibility of linear differential systems to linear differential equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 39-44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a4/
%G ru
%F VMUMM_2019_3_a4
I. N. Sergeev. Reducibility of linear differential systems to linear differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 39-44. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a4/