Billiards and integrability in geometry and physics. New scope and new potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Description of bifurcations and symmetries of integrable systems is an important branch of geometry that has many applications. Important results have been obtained recently in the descriptions of bifurcations of integrable billiards and in modelling of Hamiltonian systems of mechanics and dynamics by billiards. The paper contains interesting problems, as well as a research program for the near future. In the closing of the paper, the results allowing one to describe hidden symmetries of Hamiltonian bifurcations are given as an example of a work close to billiards subject.
@article{VMUMM_2019_3_a2,
     author = {A. T. Fomenko and V. V. Vedyushkina},
     title = {Billiards and integrability in geometry and physics. {New} scope and new potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--25},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a2/}
}
TY  - JOUR
AU  - A. T. Fomenko
AU  - V. V. Vedyushkina
TI  - Billiards and integrability in geometry and physics. New scope and new potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 15
EP  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a2/
LA  - ru
ID  - VMUMM_2019_3_a2
ER  - 
%0 Journal Article
%A A. T. Fomenko
%A V. V. Vedyushkina
%T Billiards and integrability in geometry and physics. New scope and new potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 15-25
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a2/
%G ru
%F VMUMM_2019_3_a2
A. T. Fomenko; V. V. Vedyushkina. Billiards and integrability in geometry and physics. New scope and new potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 15-25. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a2/

[1] Fokicheva V. V., “Opisanie osobennostei sistemy “bilyard v ellipse””, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 31–34 | MR | Zbl

[2] Fokicheva V. V., “Klassifikatsiya billiardnykh dvizhenii v oblastyakh, ogranichennykh sofokusnymi parabolami”, Matem. sb., 205:8 (2014), 139–160 | DOI | MR | Zbl

[3] Fokicheva V. V., “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami i giperbolami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 4, 18–27 | MR | Zbl

[4] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[5] Vedyushkina V. V., “Sloenie Liuvillya nevypuklykh topologicheskikh billiardov”, Dokl. RAN, 478:1 (2018), 7–11 | DOI | MR | Zbl

[6] Vedyushkina V. V., “Invarianty Fomenko–Tsishanga topologicheskikh bilyardov, ogranichennykh sofokusnymi parabolami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 4, 22–28 | MR | Zbl

[7] Vedyushkina V. V., “Invarianty Fomenko–Tsishanga nevypuklykh topologicheskikh billiardov”, Matem. sb., 210:3 (2019), 17–74 | DOI | MR | Zbl

[8] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[9] Karginova E. E., “Billiardy, ogranichennye dugami sofokusnykh kvadrik na ploskosti Minkovskogo”, Matem. sb., 210 (2019)

[10] Karginova E. E., “Sloenie Liuvillya topologicheskikh billiardov na ploskosti Minkovskogo”, Fund. i prikl. matem., 2019

[11] Moskvin V. A., “Topologiya sloenii Liuvillya integriruemogo bilyarda v nevypuklykh oblastyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 3, 21–29 | MR | Zbl

[12] Kobtsev I. F., “Geodezicheskii potok dvumernogo ellipsoida v pole uprugoi sily: topologicheskaya klassifikatsiya reshenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 27–33 | MR | Zbl

[13] Pustovoitov S. E., “Topologicheskii analiz billiarda v ellipticheskom koltse v potentsialnom pole”, Fund. i prikl. matem., 2019

[14] Trifonova V. A., “Vysotnye chastichno simmetrichnye atomy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 33–41 | MR | Zbl

[15] Kibkalo V. A., “Topologiya analoga sluchaya integriruemosti Kovalevskoi na algebre Li so(4) pri nulevoi postoyannoi ploschadei”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 3, 46–50 | MR

[16] Kibkalo V. A., “Topologicheskaya klassifikatsiya sloenii Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li so(4)”, Matem. sb., 210:5 (2019), 3–40 | DOI | MR | Zbl

[17] Solodskikh K. I., “Graf-mnogoobraziya i integriruemye gamiltonovy sistemy”, Matem. sb., 209:5 (2018), 145–165 | DOI | MR | Zbl

[18] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[19] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[20] Birkgof Dzh. D., Dinamicheskie sistemy, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999

[21] Kozlov V. V., Treschev D. V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[22] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1017–1075

[23] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[24] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Matem., 52:2 (1988), 378–407 | Zbl

[25] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Matem., 54:3 (1990), 546–575 | Zbl

[26] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[27] Vedyushkina V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Matem., 81:4 (2017), 20–67 | DOI | MR | Zbl

[28] Vedyushkina V. V., Fomenko A. T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN, 465:2 (2015), 150–153 | DOI

[29] Vedyushkina V. V., Fomenko A. T., Kharcheva I. S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | DOI | MR | Zbl

[30] Volchanetskii N. V., Nikonov I. M., “Maksimalno simmetrichnye vysotnye atomy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 2, 3–6 | MR | Zbl

[31] Nikonov I. M., “Vysotnye atomy s tranzitivnoi na vershinakh gruppoi simmetrii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2016, no. 6, 1–10

[32] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[33] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Simmetrichnye i neprivodimye abstraktnye mnogogranniki”, Sovremennye problemy matematiki i mekhaniki, ed. A.T. Fomenko, Izd-vo MGU, M., 2009, 58–97

[34] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991

[35] Matveev S. V., Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007

[36] Kudryavtseva E. A., Fomenko A. T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Matem., 446:6 (2012), 615–617 | Zbl

[37] Dragovich V., Radnovich M., “Topologicheskie invarianty ellipticheskikh billiardov i geodezicheskikh potokov ellipsoidov v prostranstve Minkovskogo”, Fund. i prikl. matem., 20:2 (2015), 51–64

[38] Plakhov A., Tabachnikov S., Treschev D., “Billiard transformations of parallel flows: A periscope theorem”, J. Geom. and Phys., 115:5 (2017), 157–166 | DOI | MR | Zbl

[39] Glutsyuk A., “On quadrilateral orbits in complex algebraic planar billiards”, Mosc. Math. J., 14:2 (2014), 239–289 | DOI | MR | Zbl

[40] Fomenko A. T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Matem., 55:4 (1991), 747–779

[41] Fomenko A. T., “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, Amer. Math. Soc., Providence, Rhode Island, 1991, 1–36 | MR