@article{VMUMM_2019_3_a1,
author = {I. M. Nikonov},
title = {Description of degenerate two-dimensional singularities with single critical point},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {5--15},
year = {2019},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/}
}
I. M. Nikonov. Description of degenerate two-dimensional singularities with single critical point. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 5-15. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/
[1] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[3] Khruzin A., Enumeration of chord diagrams, 1998, arXiv: math/0008209 [math.CO]
[4] Manoilo T. O., Sira M. I., Kadubovskii O. A., “Pro chislo neizomorfnikh ta neekvivalentnikh khordovykh diagram”, Poshuki i znakhidki, 1:10 (2010), 61–70
[5] Sevada J., “A fast algorithm to generate nesklase with fixed content”, Theor. Comp. Sci., 301 (2003), 477–489 | DOI | MR
[6] Gori R., Marcus M., “Counting non-isomophic chord diagrams”, Theor. Comp. Sci., 204 (1998), 55–73 | DOI | MR
[7] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka Mathematica 3.0”, Topologicheskie metody v teorii gamiltonovykh sistem, sb. statei, Faktorial, M., 1998, 203–212