Description of degenerate two-dimensional singularities with single critical point
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Formulas calculating the number of degenerate atoms with one singular point are obtained.
@article{VMUMM_2019_3_a1,
     author = {I. M. Nikonov},
     title = {Description of degenerate two-dimensional singularities with single critical point},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {5--15},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/}
}
TY  - JOUR
AU  - I. M. Nikonov
TI  - Description of degenerate two-dimensional singularities with single critical point
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 5
EP  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/
LA  - ru
ID  - VMUMM_2019_3_a1
ER  - 
%0 Journal Article
%A I. M. Nikonov
%T Description of degenerate two-dimensional singularities with single critical point
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 5-15
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/
%G ru
%F VMUMM_2019_3_a1
I. M. Nikonov. Description of degenerate two-dimensional singularities with single critical point. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2019), pp. 5-15. http://geodesic.mathdoc.fr/item/VMUMM_2019_3_a1/

[1] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[3] Khruzin A., Enumeration of chord diagrams, 1998, arXiv: math/0008209 [math.CO]

[4] Manoilo T. O., Sira M. I., Kadubovskii O. A., “Pro chislo neizomorfnikh ta neekvivalentnikh khordovykh diagram”, Poshuki i znakhidki, 1:10 (2010), 61–70

[5] Sevada J., “A fast algorithm to generate nesklase with fixed content”, Theor. Comp. Sci., 301 (2003), 477–489 | DOI | MR

[6] Gori R., Marcus M., “Counting non-isomophic chord diagrams”, Theor. Comp. Sci., 204 (1998), 55–73 | DOI | MR

[7] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka Mathematica 3.0”, Topologicheskie metody v teorii gamiltonovykh sistem, sb. statei, Faktorial, M., 1998, 203–212