Absolute $L$-realizability and intuitionistic logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 50-53

Voir la notice de l'article provenant de la source Math-Net.Ru

An absolute $L$-realizability of predicate formulas is introduced for all countable extensions $L$ of the language of arithmetic. It is proved that the intuitionistic logic is not sound with this semantics.
@article{VMUMM_2019_2_a9,
     author = {A. Yu. Konovalov},
     title = {Absolute $L$-realizability and intuitionistic logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--53},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/}
}
TY  - JOUR
AU  - A. Yu. Konovalov
TI  - Absolute $L$-realizability and intuitionistic logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 50
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/
LA  - ru
ID  - VMUMM_2019_2_a9
ER  - 
%0 Journal Article
%A A. Yu. Konovalov
%T Absolute $L$-realizability and intuitionistic logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 50-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/
%G ru
%F VMUMM_2019_2_a9
A. Yu. Konovalov. Absolute $L$-realizability and intuitionistic logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/