Absolute $L$-realizability and intuitionistic logic
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 50-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An absolute $L$-realizability of predicate formulas is introduced for all countable extensions $L$ of the language of arithmetic. It is proved that the intuitionistic logic is not sound with this semantics.
			
            
            
            
          
        
      @article{VMUMM_2019_2_a9,
     author = {A. Yu. Konovalov},
     title = {Absolute $L$-realizability and intuitionistic logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--53},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/}
}
                      
                      
                    A. Yu. Konovalov. Absolute $L$-realizability and intuitionistic logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a9/
