Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the semi-implicit difference scheme approximating a system of equations for the dynamics of a one-dimensional viscous barotropic gas, explicit formulas for the initial data stabilization algorithm for the stationary solution by the zero approximation method are obtained. The spectrum of the corresponding linearized system on the stationary solution is studied and theoretical estimates of convergence are obtained. Numerical experiments for the nonlinear problem are carried out to confirm the efficiency of the method, and to reflect the dependence of the stabilization rate on the parameters of the original problem and the algorithm parameters.
@article{VMUMM_2019_2_a2,
     author = {K. A. Zhukov and A. A. Kornev and M. A. Lozhnikov and A. V. Popov},
     title = {Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--21},
     year = {2019},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a2/}
}
TY  - JOUR
AU  - K. A. Zhukov
AU  - A. A. Kornev
AU  - M. A. Lozhnikov
AU  - A. V. Popov
TI  - Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 14
EP  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a2/
LA  - ru
ID  - VMUMM_2019_2_a2
ER  - 
%0 Journal Article
%A K. A. Zhukov
%A A. A. Kornev
%A M. A. Lozhnikov
%A A. V. Popov
%T Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 14-21
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a2/
%G ru
%F VMUMM_2019_2_a2
K. A. Zhukov; A. A. Kornev; M. A. Lozhnikov; A. V. Popov. Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 14-21. http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a2/

[1] Zhukov K. A., Kornev A. A., Popov A. V., “Ob uskorenii protsessa vykhoda na statsionar reshenii linearizovannoi sistemy dinamiki vyazkogo gaza. I, II”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 26–32 ; 3–8 | Zbl

[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Nauka, M., 2001

[3] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. I, II”, Zhurn. vychisl. matem. i matem. fiz., 3:4 (1964), 449–465 ; 4:4, 649–659

[4] Imranov F. B., Kobelkov G. M., Sokolov A. G., “O raznostnoi skheme dlya uravnenii barotropnogo gaza”, Dokl. RAN, 478:4 (2018), 388–391 | DOI | Zbl

[5] Zvyagin A. V., Kobelkov G. M., Lozhnikov M. A., “Ob odnoi raznostnoi skheme dlya uravnenii gazovoi dinamiki”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 4, 15–22 | Zbl

[6] Chizhonkov E. V., “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. Math. Modelling, 18:5 (2003), 363–376 | DOI | MR | Zbl

[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[8] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2012 | MR

[9] Milyutin S. V., Chizhonkov E. V., “O dvukh metodakh priblizhennogo proektirovaniya na ustoichivoe mnogoobrazie”, Vychisl. metody i programmir., 8 (2007), 177–182

[10] Chizhonkov E. V., “Ob operatorakh proektirovaniya dlya chislennoi stabilizatsii”, Vychisl. metody i programmir., 5 (2004), 161–169

[11] Fursikov A. V., “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Matem. sb., 192:4 (2001), 115–160 | DOI | Zbl

[12] Kornev A. A., “Klassifikatsiya metodov priblizhennogo proektirovaniya na ustoichivoe mnogoobrazie”, Dokl. RAN, 400:6 (2005), 736–738 | MR