Existence of a right system whose upper-limit central and general indexes do not coincide with lower-limit ones
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 53-57

Voir la notice de l'article provenant de la source Math-Net.Ru

On the one hand, we show that the upper-limit analogues of Vinograd–Millionschikov central exponents determined on the space of regular linear differential systems are equal to lower-limit ones. A similar fact is also valid for analogues of Bohl–Persidsky general exponents on the space of almost reducible systems. On the other hand, we present an example of a two-dimensional regular differential system with piecewise continuous bounded coefficients having noncoinciding upper-limit and lower-limit central and general exponents.
@article{VMUMM_2019_2_a10,
     author = {V. I. Kokushkin},
     title = {Existence of a right system whose upper-limit central and general indexes do not coincide with lower-limit ones},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a10/}
}
TY  - JOUR
AU  - V. I. Kokushkin
TI  - Existence of a right system whose upper-limit central and general indexes do not coincide with lower-limit ones
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 53
EP  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a10/
LA  - ru
ID  - VMUMM_2019_2_a10
ER  - 
%0 Journal Article
%A V. I. Kokushkin
%T Existence of a right system whose upper-limit central and general indexes do not coincide with lower-limit ones
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 53-57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a10/
%G ru
%F VMUMM_2019_2_a10
V. I. Kokushkin. Existence of a right system whose upper-limit central and general indexes do not coincide with lower-limit ones. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a10/