A simple proof for the upper bound of the computational complexity of three monomials in three variables
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 3-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the minimal number of multiplication operations sufficient for the joint computing of three monomials in three variables is considered. For this problem, we propose a simple proof of the upper bound asymptotically equal to the lower bound. The known proof of a similar bound contains more than 60 pages.
			
            
            
            
          
        
      @article{VMUMM_2019_2_a0,
     author = {V. V. Kochergin},
     title = {A simple proof for the upper bound of the computational complexity of three monomials in three variables},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a0/}
}
                      
                      
                    TY - JOUR AU - V. V. Kochergin TI - A simple proof for the upper bound of the computational complexity of three monomials in three variables JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 3 EP - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a0/ LA - ru ID - VMUMM_2019_2_a0 ER -
%0 Journal Article %A V. V. Kochergin %T A simple proof for the upper bound of the computational complexity of three monomials in three variables %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 3-8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a0/ %G ru %F VMUMM_2019_2_a0
V. V. Kochergin. A simple proof for the upper bound of the computational complexity of three monomials in three variables. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2019), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2019_2_a0/
