Approaches to modeling the properties of complex structure materials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 41-45
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approaches to the axiomatic construction of the theoretical basis of continuum\linebreak mechanics are considered. The main notions, laws, hypotheses of the classical theory of\linebreak continuum mechanics and the ways of their modification for non-classic versions of theories are discussed. In the framework of the classical version of the rational theory, the new axioms for the general theory of constitutive relations are proposed. For the media of non-classical type, the approaches to axiomatic construction are studied by the example of the rational mechanics of moment media (Cosserat continuum): the specific notions of bodies with their attributes and the forms of their interactions and motions are introduced, the appropriate generalizations of the main laws and hypotheses are given, the general forms of constitutive relations at arbitrary and at small strains (motions) are analyzed. The approaches to the construction of medium models in accordance with the method of mechanical (constructive) modeling proposed by A.A. Ilyushin are considered.
@article{VMUMM_2019_1_a6,
     author = {G. L. Brovko},
     title = {Approaches to modeling the properties of complex structure materials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--45},
     year = {2019},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a6/}
}
TY  - JOUR
AU  - G. L. Brovko
TI  - Approaches to modeling the properties of complex structure materials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 41
EP  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a6/
LA  - ru
ID  - VMUMM_2019_1_a6
ER  - 
%0 Journal Article
%A G. L. Brovko
%T Approaches to modeling the properties of complex structure materials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 41-45
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a6/
%G ru
%F VMUMM_2019_1_a6
G. L. Brovko. Approaches to modeling the properties of complex structure materials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 41-45. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a6/

[1] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1984

[2] Ilyushin A. A., Mekhanika sploshnoi sredy, Izd-vo MGU, M., 1990

[3] Cosserat E., Cosserat F., Theorie des corps deformables, Hermann, Paris, 1909 | Zbl

[4] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975

[5] Truesdell C., Noll W., The Nonlinear Field Theories of Mechanics, Enciclopedia of Physics, III/3, Springer-Verlag, Berlin–Heidelberg–N.Y., 1965 ; 2nd Ed., 1992; 3rd Ed., 2004 | MR

[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[7] Brovko G. L., Elementy matematicheskogo apparata mekhaniki sploshnoi sredy, Fizmatlit, M., 2015

[8] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[9] Brovko G. L., “On general principles of the theory of constitutive relations in classical continuum mechanics”, J. Eng. Math., 78 (2013), 37–53 | DOI | MR | Zbl

[10] Brovko G. L., Ilyushin A. A., “Ob odnoi ploskoi modeli perforirovannykh plit”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 2, 83–91 | Zbl

[11] Brovko G. L., Ilyushin A. A., “Modeli i opredelyayuschie eksperimenty v teorii uprugoplasticheskikh protsessov pri konechnykh deformatsiyakh”, A. A. Ilyushin. Trudy, v. 4, Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniya, Fizmatlit, M., 2009, 148–159

[12] Brovko G. L., “Ob odnoi konstruktsionnoi modeli sredy Kossera”, Izv. RAN. Mekhan. tverdogo tela, 2002, no. 1, 75–91

[13] Brovko G. L., Grishayev A. G., Ivanova O. A., “Continuum models of discrete heterogeneous structures and saturated porous media: constitutive relations and invariance of internal interactions”, J. Phys. Conf. Ser., 62 (2007), 1–22 | DOI

[14] Brovko G. L., Ivanova O. A., “Modelirovanie svoistv i dvizhenii neodnorodnogo odnomernogo kontinuuma slozhnoi mikrostruktury tipa Kossera”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 1, 22–36

[15] Brovko G. L., “Modeli i zadachi dlya napolnennykh poristykh sred”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 6, 33–44 | MR