@article{VMUMM_2019_1_a4,
author = {Ya. I. Petrukhin},
title = {Deduction normalization theorem for {Sette's} logic and its modifications},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {26--33},
year = {2019},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a4/}
}
Ya. I. Petrukhin. Deduction normalization theorem for Sette's logic and its modifications. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 26-33. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a4/
[1] Lewin R. A., Mikenberg I. F., “Literal-paraconsistent and literal-paracomplete matrices”, Math. Log. Quart., 52:5 (2006), 478–493 | DOI | MR | Zbl
[2] Priest G., “Paraconsistent logic”, Handbook of philosophical logic, v. 6, 2nd ed., eds. D. M. Gabbay, F. Guenthner, Kluwer Academic Publishers, 2002, 287–393 | DOI | MR
[3] Sette A. M., Carnielli W. A., “Maximal weakly-intuitionistic logics”, Stud. Log., 55:1 (1995), 181–203 | DOI | MR | Zbl
[4] Karpenko A., Tomova N., “Bochvar's three-valued logic and literal paralogics: Their lattice and functional equivalence”, Log. and Log. Phil., 26:2 (2017), 207–235 | MR | Zbl
[5] Karpenko A. S., Tomova N. E., Trekhznachnaya logika Bochvara i literalnye paralogiki, IF RAN, M., 2016
[6] Sette A. M., “On propositional calculus P$ _{1} $”, Math. Jap., 18:3 (1973), 173–180 | MR | Zbl
[7] Carnielli W. A., Marcos J., “A Taxonomy of C-systems”, Paraconsistency: The Logical Way to the Inconsistent, eds. W. A. Carnielli, M. E. Coniglio, I. M. L. D'Ottaviano, Marcel Dekker, N.Y., 2002, 1–94 | MR | Zbl
[8] Popov V. M., “Ob odnoi trekhznachnoi parapolnoi logike”, Log. Invest., 9 (2002), 175–178 | Zbl
[9] Marcos J., “On a problem of da Costa”, Essays of the foundations of mathematics and logic, v. 2, ed. G. Sica, Polimetrica, Monza, 2005, 53–69 | Zbl
[10] Bochvar D. A., “Ob odnom trekhznachnom ischislenii i ego primenenii k analizu paradoksov klassicheskogo rasshirennogo funktsionalnogo ischisleniya”, Matem. sb., 4:2 (1938), 287–308
[11] Karpenko A. S., “A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical logic”, Frontiers of Paraconsistent Logic, eds. D. Batens, C. Mortensen, G. Priest, J.-P. van Bendegem, Research Studies Press, Baldock, 2002, 181–187 | MR
[12] Popov V. M., “On the logics related to Arruda's system V1”, Log. and Log. Phil., 7 (1999), 87–90 | DOI | MR | Zbl
[13] Carnielli W. A., Lima-Marques M., “Society semantics and multiple-valued logics”, Adv. Contemp. Log. and Comput. Sci., 235 (1999), 33–52 | DOI | MR | Zbl
[14] Ciuciura J., “Paraconsistency and Sette's calculus P1”, Log. and Log. Phil., 24:2 (2015), 265–273 | MR | Zbl
[15] Ciuciura J., “A weakly-intuitionistic logic I1”, Log. Invest., 21:2 (2015), 53–60 | MR | Zbl
[16] Gentzen G., “Untersuchungen über das logische Schliessen I; II”, Math. Z., 39:1 (1935), 176–210 ; 405–431 | DOI | MR
[17] Jaśkowski S., “On the rules of suppositions in formal logic”, Stud. Log., 1 (1934), 5–32
[18] Becchio D., Pabion J-F., “Gentzen's techniques in the three-valued logic of Łukasiewicz”, J. Symb. Log., 42:2 (1977), 123–124
[19] Łukasiewicz J., “O logice trójwartościowej”, Ruch Fil., 5 (1920), 170–171
[20] Petrukhin Y., “Natural deduction for three-valued regular logics”, Log. and Log. Phil., 26:2 (2017), 197–206 | MR | Zbl
[21] Petrukhin Y., “Natural deduction for four-valued both regular and monotonic logics”, Log. and Log. Phil., 27:1 (2018), 53–66 | MR | Zbl
[22] Petrukhin Y., “Natural deduction for Fitting's four-valued generalizations of Kleene's logics”, Logica Universalis, 11:4 (2017), 525–532 | DOI | MR | Zbl
[23] Petrukhin Ya. I., “Sistema naturalnogo vyvoda dlya trekhznachnoi logiki Geitinga”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 3, 63–66 | MR | Zbl
[24] Petrukhin Ya. I., “Naturalnye ischisleniya dlya trekhznachnykh logik bessmyslennosti Z i E”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 60–63 | MR | Zbl
[25] Arieli O., Avron A., Zamansky A., What is an ideal logic for reasoning with inconsistency?, Proc. IJCAI'11 (Barcelona, 2011), 706–711
[26] Zimmermann E., “Peirce's rule in natural deduction”, Theor. Comput. Sci., 275:1–2 (2002), 561–574 | DOI | MR | Zbl
[27] Kooi B., Tamminga A., “Completeness via correspondence for extensions of the logic of paradox”, Rev. Symb. Log., 5:4 (2012), 720–730 | DOI | MR | Zbl
[28] van Dalen D., Logic and Structure, 3rd ed., Springer-Verlag, Berlin, 1997 | MR
[29] Prawitz D., Natural Deduction. A Proof-Theoretical Study, Almquist and Wiksell, Stockholm, 1965 | MR | Zbl