Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 21-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The oscillation, rotatability, and wandering characteristic indicators of Lyapunov type are studied for two-dimensional linear homogeneous differential systems that determine rotations of the phase plane. A complete set of order relations between them is obtained. For each of those indicators it is established whether it is continuous or discontinuous as a function of the coefficient of the system.
@article{VMUMM_2019_1_a3,
     author = {I. N. Sergeev},
     title = {Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--26},
     year = {2019},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a3/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 21
EP  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a3/
LA  - ru
ID  - VMUMM_2019_1_a3
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 21-26
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a3/
%G ru
%F VMUMM_2019_1_a3
I. N. Sergeev. Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 21-26. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a3/

[1] Sergeev I. N., “Pokazateli koleblemosti, vraschaemosti i bluzhdaemosti differentsialnoi sistemy, zadayuschei povoroty ploskosti”, Differents. uravneniya, 53:6 (2017), 853–855

[2] Sergeev I. N., “O nepreryvnosti pokazatelei koleblemosti, vraschaemosti i bluzhdaemosti sistem, zadayuschikh povoroty ploskosti”, Differents. uravneniya, 54:6 (2017), 848–850

[3] Sergeev I. N., “Svoistva pokazatelei koleblemosti, vraschaemosti i bluzhdaemosti sistem, zadayuschikh povoroty ploskosti”, XVIII Mezhdunar. nauchnaya konf. po differentsialnym uravneniyam (Eruginskie chteniya – 2018), Mat-ly Mezhdunar. nauchnoi konf. (Grodno, 15–18 maya 2018 g.), v. 1, In-t matematiki NAN Belarusi, Minsk, 2018, 56–58

[4] Sergeev I. N., “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Tr. seminara im. I. G. Petrovskogo, 31, 2016, 177–219

[5] Sergeev I. N., “Polnyi nabor sootnoshenii mezhdu pokazatelyami koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Izv. In-ta matem. i inform. UdGU, 2015, no. 2(46), 171–183 | Zbl

[6] Sergeev I. N., “Opredelenie i svoistva pokazatelei ploskoi vraschaemosti reshenii differentsialnoi sistemy”, Differents. uravneniya, 53:6 (2017), 851–853

[7] Sergeev I. N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 111–166 | Zbl

[8] Sergeev I. N., “Koleblemost, vraschaemost i bluzhdaemost reshenii lineinykh differentsialnykh sistem”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematich. obzory, 132, 2017, 117–121

[9] Sergeev I. N., “Oscillation, rotation, and wandering of solutions to linear differential systems”, J. Math. Sci., 230:5 (2018), 770–774 | DOI | MR | Zbl