Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 57-61
We consider the Sturm–Liouville equation $$-(r^2y')'+py'+qy=\lambda^2\rho^2 y,\qquad x\in[a,b]\subset\mathbb{R},$$ where $\lambda^2$ is a spectral parameter, $r$ and $\rho$ are positive functions while $p$ and $q$ are complex-valued ones. An asymptotic representation for the fundamental system of solutions with respect to the spectral parameter $\lambda\to\infty$ is obtained in the half-planes $\operatorname{Im}\lambda\geqslant\operatorname{const}$ and $\operatorname{Im}\lambda\leqslant\operatorname{const}$ under the following conditions on the coefficients: $$p\in L_1[a,b],\quad q\in W_2^{-1}[a,b],\quad\rho,r\in W_1^1[a,b],\quad\rho'u,r'u,pu\in L_1[a,b], \quad\text{where}\quad u=\int q~dx,$$ and the antiderivative is understood in the sense of distributions.
@article{VMUMM_2019_1_a10,
author = {V. E. Vladykina},
title = {Asymptotics of fundamental solutions to {Sturm{\textendash}Liouville} problem with respect to spectral parameter},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--61},
year = {2019},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a10/}
}
TY - JOUR AU - V. E. Vladykina TI - Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 57 EP - 61 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a10/ LA - ru ID - VMUMM_2019_1_a10 ER -
V. E. Vladykina. Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a10/
[1] Birkhoff G. D., “On the asymptotic character of the solution of certain linear differential equations containing parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR
[2] Birkhoff G. D., “Boundary value and expansion problem of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl
[3] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. matem. o-va, 64, 2003, 159–212 | Zbl
[4] Shkalikov A. A., Vladykina V. E., “Asymptotics of the solutions of the Sturm–Liouville equation with singular coefficients”, Math. Notes, 99:5 (2015), 891–899 | DOI | MR