The complexity of solving low degree equations over ring of integers and residue rings
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 7-15
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for an arbitrary polynomial $f(x)\in\mathbb{Z}_{p^n}[X]$ of degree $d$ the Boolean complexity of calculation of one its root (if it exists) equals $O(dM(n\lambda(p)))$ for fixed prime $p$ and growing $n$, where $\lambda(p)=\lceil\log_2p\rceil,$ $M(n)$ is the Boolean complexity of multiplication of two binary $n$-bit numbers. Given the known decomposition of this number into prime factors $n=m_1\ldots m_k,$ $m_i=p_i^{n_i},$ $i=1,\ldots,k,$ fixed $k,$ fixed prime $p_i,$ $i=1,\ldots,k,$ and growing $n$, the Boolean complexity of calculation of one of solutions to the comparison $f(x)=0\bmod{n}$ equals $O(dM(\lambda(n))).$ In particular, the same estimate is obtained for calculation of one root of any given degree in the residue ring $\mathbb{Z}_{m}.$ As a corollary, we obtained that the Boolean complexity of calculation of integer roots of the polynomial $f(x)$ is equal to $O_d(M(n))$ if $f(x)=a_dx^d+a_{d-1}x^{d-1}+ \ldots+a_0,$ $a_i\in{\mathbb Z},$ $\vert a_i\vert 2^n,$ $i=0,\ldots, d.$
            
            
            
          
        
      @article{VMUMM_2019_1_a1,
     author = {S. B. Gashkov and I. B. Gashkov and A. B. Frolov},
     title = {The complexity of solving low degree equations over ring of integers and residue rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--15},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a1/}
}
                      
                      
                    TY - JOUR AU - S. B. Gashkov AU - I. B. Gashkov AU - A. B. Frolov TI - The complexity of solving low degree equations over ring of integers and residue rings JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 7 EP - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a1/ LA - ru ID - VMUMM_2019_1_a1 ER -
%0 Journal Article %A S. B. Gashkov %A I. B. Gashkov %A A. B. Frolov %T The complexity of solving low degree equations over ring of integers and residue rings %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 7-15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a1/ %G ru %F VMUMM_2019_1_a1
S. B. Gashkov; I. B. Gashkov; A. B. Frolov. The complexity of solving low degree equations over ring of integers and residue rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 7-15. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a1/
