Construction of an infinite set of classes of partial monotone functions of multi-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Partial functions of the $k$-valued logic monotone with respect to an arbitrary partly ordered set with the least and largest elements and distinct from a lattice are considered. It is shown that the set of closed classes of partial monotone functions containing a precomplete in $P_k$ class of everywhere determined monotone function is infinite.
@article{VMUMM_2019_1_a0,
     author = {O. S. Dudakova},
     title = {Construction of an infinite set of classes of partial monotone functions of multi-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     year = {2019},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/}
}
TY  - JOUR
AU  - O. S. Dudakova
TI  - Construction of an infinite set of classes of partial monotone functions of multi-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 3
EP  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/
LA  - ru
ID  - VMUMM_2019_1_a0
ER  - 
%0 Journal Article
%A O. S. Dudakova
%T Construction of an infinite set of classes of partial monotone functions of multi-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 3-7
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/
%G ru
%F VMUMM_2019_1_a0
O. S. Dudakova. Construction of an infinite set of classes of partial monotone functions of multi-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/

[1] Freivald R.V., “Kriterii polnoty dlya chastichnykh funktsii algebry logiki i mnogoznachnykh logik”, Dokl. AN SSSR, 167:6 (1966), 1249–1250 | MR

[2] Alekseev V.B., Voronenko A.A., “O nekotorykh zamknutykh klassakh v chastichnoi dvuznachnoi logike”, Diskretn. matem., 6:4 (1994), 58–79 | Zbl

[3] Lau D., Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006 | MR | Zbl

[4] Dudakova O.S., “O klassakh chastichnykh monotonnykh funktsii shestiznachnoi logiki”, Mat-ly XVIII Mezhdunar. konf. “Problemy teoreticheskoi kibernetiki” (Penza, 19–23 iyunya 2017 g.), MAKS Press, M., 2017, 78–81

[5] Alekseev V.B., “O chisle zamknutykh klassov v chastichnoi $k$-znachnoi logike, soderzhaschikh klass monotonnykh funktsii”, Tr. X Mezhdunar. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem” (Moskva i Podmoskove, 23–25 maya 2018 g.), MAKS Press, M., 2018, 33–36

[6] Alekseev V.B., “O zamknutykh klassakh v chastichnoi $k$-znachnoi logike, soderzhaschikh klass monotonnykh funktsii”, Diskretn. matem., 30:2 (2018), 3–13 | DOI | MR

[7] Tardos G., “A not finitely generated maximal clone of monotone operations”, Order, 3 (1986), 211–218 | DOI | MR | Zbl