Construction of an infinite set of classes of partial monotone functions of multi-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial functions of the $k$-valued logic monotone with respect to an arbitrary partly ordered set with the least and largest elements and distinct from a lattice are considered. It is shown that the set of closed classes of partial monotone functions containing a precomplete in $P_k$ class of everywhere determined monotone function is infinite.
@article{VMUMM_2019_1_a0,
     author = {O. S. Dudakova},
     title = {Construction of an infinite set of classes of partial monotone functions of multi-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/}
}
TY  - JOUR
AU  - O. S. Dudakova
TI  - Construction of an infinite set of classes of partial monotone functions of multi-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2019
SP  - 3
EP  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/
LA  - ru
ID  - VMUMM_2019_1_a0
ER  - 
%0 Journal Article
%A O. S. Dudakova
%T Construction of an infinite set of classes of partial monotone functions of multi-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2019
%P 3-7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/
%G ru
%F VMUMM_2019_1_a0
O. S. Dudakova. Construction of an infinite set of classes of partial monotone functions of multi-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/