Construction of an infinite set of classes of partial monotone functions of multi-valued logic
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Partial functions of the $k$-valued logic monotone with respect to an arbitrary partly ordered set with the least and largest elements and distinct from a lattice are considered. It is shown that the set of closed classes of partial monotone functions containing a precomplete in $P_k$ class of everywhere determined monotone function is infinite.
			
            
            
            
          
        
      @article{VMUMM_2019_1_a0,
     author = {O. S. Dudakova},
     title = {Construction of an infinite set of classes of partial monotone functions of multi-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/}
}
                      
                      
                    TY - JOUR AU - O. S. Dudakova TI - Construction of an infinite set of classes of partial monotone functions of multi-valued logic JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2019 SP - 3 EP - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/ LA - ru ID - VMUMM_2019_1_a0 ER -
%0 Journal Article %A O. S. Dudakova %T Construction of an infinite set of classes of partial monotone functions of multi-valued logic %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2019 %P 3-7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/ %G ru %F VMUMM_2019_1_a0
O. S. Dudakova. Construction of an infinite set of classes of partial monotone functions of multi-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2019), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2019_1_a0/
