Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 70-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish sufficient conditions for the uniqueness of solutions in the space of functions continuous on the semiaxis of Volterra integral equations of first and third kinds in the case when the kernels of these equations can be alternating on the diagonal. Illustrative examples are given.
@article{VMUMM_2018_6_a9,
     author = {S. Iskandarov},
     title = {Uniqueness of solutions to first and third order {Volterra} type integral equations on a semiaxis},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {70--72},
     year = {2018},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a9/}
}
TY  - JOUR
AU  - S. Iskandarov
TI  - Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 70
EP  - 72
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a9/
LA  - ru
ID  - VMUMM_2018_6_a9
ER  - 
%0 Journal Article
%A S. Iskandarov
%T Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 70-72
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a9/
%G ru
%F VMUMM_2018_6_a9
S. Iskandarov. Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 70-72. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a9/

[1] Magnitskii N. A., “Lineinye integralnye uravneniya Volterra I i III rodov”, Zhurn. vychisl. matem. i matem. fiz., 19:4 (1979), 970–989 | MR

[2] Asanov A., Regularization, Uniqueness and Existence of Solutions of Volterra Equations of the First Kind, VSP, Utrecht, 1998 | MR | Zbl

[3] Imanaliev M. I., Asanov A., “Regulyarizatsiya i edinstvennost reshenii sistem nelineinykh integralnykh uravnenii Volterra tretego roda”, Dokl. RAN, 415:1 (2007), 14–17 | Zbl

[4] Iskandarov S., “Dostatochnye usloviya ogranichennosti i ustoichivosti reshenii slabo nelineinykh integro-differentsialnykh uravnenii pervogo i vtorogo poryadka tipa Volterra. Neogranichennost reshenii lineinykh odnorodnykh uravnenii pervogo poryadka”, Issledovaniya po integrodifferentsialnym uravneniyam, 13, Ilim, Frunze, 1980, 149–184

[5] Iskandarov S., Metod vesovykh i srezyvayuschikh funktsii i asimptoticheskie svoistva reshenii integro-differentsialnykh i integralnykh uravnenii tipa Volterra, Ilim, Bishkek, 2002

[6] Iskandarov S., Metod vesovykh i srezyvayuschikh funktsii i asimptoticheskie svoistva reshenii uravnenii tipa Volterra, Dokt. dis., Bishkek, 2003

[7] Iskandarov S., “O edinstvennosti reshenii lineinykh integralnykh uravnenii tipa Volterra pervogo i tretego rodov na poluosi”, Mezhdunar. konf. “Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki”, priurochennoi k 110-letiyu so dnya rozhdeniya akad. A. N. Tikhonova, Tez. dokl. (Moskva, 31 okt.–3 noyab. 2016 g.), Izd. otdel f-ta VMK MGU im. M.V. Lomonosova, M., 2016, 153