Parseval frames of serial shifts of a function in spaces of trigonometric polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 30-36
Voir la notice de l'article provenant de la source Math-Net.Ru
The work establishes possible dimensions of Parseval's frame in the space of trigonometric polynomials of the form
$T_Q(x)=\sum\limits_{k\in Q}c_k e^{ikx}$ consisting of serial translations of a polynomial ($c_k\in\mathbb C$, where the finite set $Q\subset\mathbb Z$). Sufficient and necessary conditions for a system of serial translations to be a Parseval's frame are also established there. The result is applied to some particular cases.
@article{VMUMM_2018_6_a3,
author = {A. V. Fadeeva},
title = {Parseval frames of serial shifts of a function in spaces of trigonometric polynomials},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {30--36},
publisher = {mathdoc},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/}
}
TY - JOUR AU - A. V. Fadeeva TI - Parseval frames of serial shifts of a function in spaces of trigonometric polynomials JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2018 SP - 30 EP - 36 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/ LA - ru ID - VMUMM_2018_6_a3 ER -
A. V. Fadeeva. Parseval frames of serial shifts of a function in spaces of trigonometric polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/