Parseval frames of serial shifts of a function in spaces of trigonometric polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work establishes possible dimensions of Parseval's frame in the space of trigonometric polynomials of the form $T_Q(x)=\sum\limits_{k\in Q}c_k e^{ikx}$ consisting of serial translations of a polynomial ($c_k\in\mathbb C$, where the finite set $Q\subset\mathbb Z$). Sufficient and necessary conditions for a system of serial translations to be a Parseval's frame are also established there. The result is applied to some particular cases.
@article{VMUMM_2018_6_a3,
     author = {A. V. Fadeeva},
     title = {Parseval frames of serial shifts of a function in spaces of trigonometric polynomials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--36},
     year = {2018},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/}
}
TY  - JOUR
AU  - A. V. Fadeeva
TI  - Parseval frames of serial shifts of a function in spaces of trigonometric polynomials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 30
EP  - 36
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/
LA  - ru
ID  - VMUMM_2018_6_a3
ER  - 
%0 Journal Article
%A A. V. Fadeeva
%T Parseval frames of serial shifts of a function in spaces of trigonometric polynomials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 30-36
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/
%G ru
%F VMUMM_2018_6_a3
A. V. Fadeeva. Parseval frames of serial shifts of a function in spaces of trigonometric polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a3/

[1] Lukashenko T. P., “Bazisy trigonometricheskikh mnogochlenov iz sdvigov yader Dirikhle”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 5, 35–40 | Zbl

[2] Lukashenko T. P., “Ortogonalnye bazisy sdvigov v prostranstvakh trigonometricheskikh mnogochlenov”, Izv. Saratov. un-ta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 367–373 | Zbl

[3] Dobeshi I., Desyat lektsii po veivletam, NITs RKhD, Izhevsk, 2001

[4] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR