Implementation of the fast algorithm for geometrical coding of digital images with the use of CUDA architecture
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 20-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we compare the speed and quality of CUDA realization for new contour detection algorithm based on geometrical coding with CUDA implementation of Canny algorithm which is commonly used in OpenCV library. The comparison shows that the new approach can really compete with the Canny operator and in some cases even overcome it in speed and quality. Examples of geometrical coding contour detection in different situations are presented.
@article{VMUMM_2018_6_a2,
     author = {A. Yu. Chekunov},
     title = {Implementation of the fast algorithm for geometrical coding of digital images with the use of {CUDA} architecture},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--30},
     year = {2018},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a2/}
}
TY  - JOUR
AU  - A. Yu. Chekunov
TI  - Implementation of the fast algorithm for geometrical coding of digital images with the use of CUDA architecture
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2018
SP  - 20
EP  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a2/
LA  - ru
ID  - VMUMM_2018_6_a2
ER  - 
%0 Journal Article
%A A. Yu. Chekunov
%T Implementation of the fast algorithm for geometrical coding of digital images with the use of CUDA architecture
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2018
%P 20-30
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a2/
%G ru
%F VMUMM_2018_6_a2
A. Yu. Chekunov. Implementation of the fast algorithm for geometrical coding of digital images with the use of CUDA architecture. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2018), pp. 20-30. http://geodesic.mathdoc.fr/item/VMUMM_2018_6_a2/

[1] Canny J., “A computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (1986), 679–714 | DOI

[2] Nosovskii G. V., “Geometricheskoe kodirovanie tsvetnykh izobrazhenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 3–11 | MR

[3] Nosovskii G. V., Chekunov A. Yu., Podlipaev S. A., “Bystryi algoritm geometricheskogo kodirovaniya tsifrovykh izobrazhenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 6, 20–27 | MR | Zbl

[4] Li J.Q., Sun D. C., “An improved box-counting method for image fractal dimension estimation”, Pattern Recognition, 42:11 (2009), 2460–2469 | DOI | Zbl

[5] Roodt Y., Visser W., Clarke W., “Image processing on the GPU: Implementing the Canny edge detection algorithm”, Int. Symp. of the Pattern Recognition Association of South Africa (Pietermaritzburg, 2007), 45–50

[6] Luo Y., Duraiswami R., “Canny edge detection on NVIDIA CUDA”, IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition Workshops CVPRW'08 (Anchorage, Alaska, 2008)

[7] Ogawa K., Ito Y., Nakano K., “Efficient Canny edge detection using a GPU”, Int. Conf. on Networking and Computing (ICNC) (Higashi–Hiroshima, 2010), 279–280

[8] Niu S., Yang J., Wang S., Chen G., “Improvement and parallel implementation of Canny edge detection algorithm based on GPU”, IEEE 9th Int. Conf. on ASIC (ASICON) (October 25–28, 2011, Xiamen, China), 641–644